Question #210143

A software designer is mapping the streets for a new racing game. All of the streets are depicted as either perpendicular or parallel lines. The equation of the lane passing through A and B is -7x + 3y = -21.5. What is the equation of the central street PQ?

A. -3x + 4y = 3

B. -1.5x − 3.5y = -31.5

C. 2x + y = 20

D. -2.25x + y = -9.75


1
Expert's answer
2021-06-24T17:45:49-0400

the given line is

7x+3y=21.53y=7x21.5y=73x21.53-7x+3y=-21.5\\ 3y=7x-21.5\\ y=\frac{7}{3}x-\frac{21.5}{3}


here coefficient of x is 7/3 so the slope of the given line is

m1=73m_1=\frac{7}{3}


now the line PQ should be either parallel or perpendicular 

let the slope of the line PQ is  m2

so when m1=m2  then both lines are parallel

and when m1.m2=-1  then both lines are perpendicular 


now check the first option 

3x+4y=34y=3x+3y=34x+34-3x+4y=3\\ 4y=3x+3\\ y=\frac{3}{4}x+\frac{3}{4}


here coefficient of x is 3/4 so the slope of the first line is

m2=34so here m1m2.m_2= \frac{3}{4} \\ so \space here \space m_1\ne m_2 .

so both lines are not parallel


now find its product

m1m2=7334m1m2=74m1m21m_1 \cdot m_2= \frac{7}{3}\cdot \frac{3}{4}\\ m_1 \cdot m_2= \frac{7}{4}\\ m_1 \cdot m_2 \ne -1\\

so both lines are not perpendicular 


now check the second option 

1.5x3.5y=31.5-1.5x-3.5y=-31.5

3.5y=1.5x31.5-3.5y=1.5x-31.5

3.5y=1.5x+31.53.5y=-1.5x+31.5

y=1.53.5x+31.53.5y=-\frac{1.5}{3.5}x+\frac{31.5}{3.5}


y=1535x+31535y=-\frac{15}{35}x+\frac{315}{35}


y=37x+9y=-\frac{3}{7}x+9


so here m1m2so\space here \space m_1\ne m_2


so both lines are not parallel

now find its productm1m2=73(37)m1m2=1now\space find \space its \space product\\ m_1 \cdot m_2= \frac{7}{3}\left(-\frac{3}{7}\right) {\color{Red} m_1 \cdot m_2= -1}

therefore both lines are perpendicular 


so option B is correct

1.5x3.5y=31.5.{\color{Red} -1.5x-3.5y=-31.5} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS