Question #205049

How many solutions over the complex number system does this polynomial have?

2x^4 – 3x^3 – 24x^2 + 13x + 12 = 0


1
Expert's answer
2021-06-12T06:38:13-0400

f(x)=02x43x324x2+13x+12=02x42x3x3+x225x2+25x12x+12=02x3(x1)x2(x1)25x(x1)12(x1)=0(x1)(2x3x225x12)=0(x1)(2x3+6x27x221x4x12)=0(x1)(2x2(x+3)7x(x+3)4(x+3)=0(x1)(x+3)(2x27x4)=0(x1)(x+3)(2x28x+x4)=0(x1)(x+3)(2x(x4)+1(x4))=0(x1)(x+3)(x4)(2x+1)=0Thus, only real roots i.e., -3, -0.5, 1 and 4. Since, real number set is a subset of complex number. Therefore, given polynomial has 4 root over complex number system.f(x) =0\\ 2x^4 - 3x^3- 24x^2 + 13x + 12=0\\ 2x^4 - 2x^3-x^3+x^2- 25x^2 + 25x -12x+ 12=0\\ 2x^3(x-1) - x^2(x-1)-25x(x-1)-12(x-1)=0\\ (x-1)(2x^3- x^2-25x-12)=0\\ (x-1)(2x^3+6x^2-7 x^2-21x-4x-12)=0\\ (x-1)(2x^2(x+3)-7 x(x+3)-4(x+3)=0\\ (x-1)(x+3)(2x^2-7x-4)=0\\ (x-1)(x+3)(2x^2-8x+x-4)=0\\ (x-1)(x+3)(2x(x-4)+1(x-4))=0\\ (x-1)(x+3)(x-4)(2x+1)=0\\ \text{Thus, only real roots i.e., -3, -0.5, 1 and 4. Since, real number set is a subset of complex number. Therefore, given polynomial has 4 root over complex number system.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS