Question #199025

(e^2x+1)+3-3(e^x+1)=e^x


1
Expert's answer
2021-06-08T04:21:02-0400

Solution.

(e2x+1)+33(ex+1)=ex;(e2x+1)+33ex3=ex;e2x4ex+1=0;(e^{2x}+1)+3-3(e^x+1)=e^x; \newline (e^{2x}+1) +3-3e^x-3=e^x; \newline e^{2x}-4e^x+1=0; \newline

Lets y=ex;y=e^x; \newline

y24y+1=0;D=b24ac;D=16411=12;D=12=23;y1=(b+D)/2a;y1=(4+23)/2=2+3=2+1.73=3.73;y2=(bD)/2a;y2=(423)/2=23=21.73=0.27;y^2-4y+1=0; \newline D=b^2-4ac; \newline D=16-4*1*1=12; \newline \sqrt{D}=\sqrt{12}=2\sqrt{3}; \newline y_1=(-b+\sqrt{D})/2a; \newline y_1=(4+2\sqrt{3})/2=2+\sqrt{3}=2+1.73=3.73; \newline y_2=(-b-\sqrt{D})/2a; \newline y_2=(4-2\sqrt{3})/2=2-\sqrt{3}=2-1.73=0.27; \newline

The main natural logarithm formula is:

ln(ex)=x.y1=ex1;ex1=3.73;ln(ex1)=ln(3.73);x1ln(e)=ln(3.73);x11=ln(3.73);x1=1.32;y2=ex2;ex2=0.27;ln(ex2)=ln(0.27);x2=ln(0.27);x2=1.3.ln(e^x)=x. \newline y_1=e^{x_1};\newline e^{x_1}=3.73;\newline ln(e^{x_1})=ln(3.73);\newline x_1*ln(e)=ln(3.73);\newline x_1*1=ln(3.73);\newline x_1=1.32; \newline y_2=e^{x_2}; \newline e^{x_2}=0.27; \newline ln(e^{x_2})=ln(0.27); \newline x_2=ln(0.27); \newline x_2=-1.3.

Answer: x1=1.32;x2=1.3.x_1=1.32; x_2=-1.3.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS