(e^2x+1)+3-3(e^x+1)=e^x
Solution.
"(e^{2x}+1)+3-3(e^x+1)=e^x; \\newline\n(e^{2x}+1) +3-3e^x-3=e^x; \\newline\ne^{2x}-4e^x+1=0; \\newline"
Lets "y=e^x; \\newline"
"y^2-4y+1=0; \\newline\nD=b^2-4ac; \\newline\nD=16-4*1*1=12; \\newline\n\\sqrt{D}=\\sqrt{12}=2\\sqrt{3}; \\newline\ny_1=(-b+\\sqrt{D})\/2a; \\newline\ny_1=(4+2\\sqrt{3})\/2=2+\\sqrt{3}=2+1.73=3.73; \\newline\ny_2=(-b-\\sqrt{D})\/2a; \\newline\ny_2=(4-2\\sqrt{3})\/2=2-\\sqrt{3}=2-1.73=0.27; \\newline"
The main natural logarithm formula is:
"ln(e^x)=x. \\newline\ny_1=e^{x_1};\\newline\ne^{x_1}=3.73;\\newline\nln(e^{x_1})=ln(3.73);\\newline\nx_1*ln(e)=ln(3.73);\\newline\nx_1*1=ln(3.73);\\newline\nx_1=1.32; \\newline\ny_2=e^{x_2}; \\newline\ne^{x_2}=0.27; \\newline\nln(e^{x_2})=ln(0.27); \\newline\nx_2=ln(0.27); \\newline\nx_2=-1.3."
Answer: "x_1=1.32; x_2=-1.3."
Comments
Leave a comment