Given, the polynomial p(x)=10x5+6x4+3x3β6x2+8x+15andx0β=3Since, it is 5 degree polynomial.n=5Hornerβ²srule,1.Setk=n2.Letbkβ=akβ3.Letbkβ1β=akβ1β+bkβx0β4.Letk=kβ15.Ifkβ₯0then go to step 3Else EndThen,b5β=a5β=10b4β=a4β+x0βb5β=6+3Γ10=36b3β=a3β+x0βb4β=3+3Γ36=111b2β=a2β+x0βb3β=β6+3Γ111=327b1β=a1β+x0βb2β=8+3Γ327=989b0β=a0β+x0βb1β=15+3Γ989=2982Therefore,P(3)=2982.
Comments
Leave a comment