Question #188651

If a= [4,3]

[2,5] 2×2 matrix.

Find x and y such that A²-xA + y I = 0


1
Expert's answer
2021-05-07T11:32:54-0400

Given[4325]2×2Given \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}_{2\times 2}


A2xA+yI=0.....................................................(i)A^2-xA+yI=0.....................................................(i)


A2=A.A=[4325][4325]=[16+612+158+106+25]A^2=A.A=\begin{bmatrix} 4 & 3\\ 2 & 5 \end{bmatrix}\begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}=\begin{bmatrix} 16+6 & 12+15 \\ 8+10 & 6+25 \end{bmatrix}


A2=[22271831]A^2=\begin{bmatrix} 22 & 27 \\ 18 & 31 \end{bmatrix}

Value of A2 and A put in equation (i). I is identity matrix.


[22271831]x[4325]+y[1001]=[0000]\begin{bmatrix} 22 & 27 \\ 18 & 31 \end{bmatrix}-x\begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}+y\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}


[22271831][4x3x2x5x]+[y00y]=[0000]\begin{bmatrix} 22 & 27 \\ 18 & 31 \end{bmatrix}-\begin{bmatrix} 4x & 3x \\ 2x & 5x \end{bmatrix}+\begin{bmatrix} y & 0 \\ 0 & y \end{bmatrix}=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}


[224x+y273x182x315x+y]=[0000]\begin{bmatrix} 22-4x+y & 27-3x \\ 18-2x & 31-5x+y \end{bmatrix}=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}


224xy+y=0.......................................................(ii)22-4xy+y=0.......................................................(ii)


273x=027-3x=0

3x=273x=27

x=9x=9



182x=018-2x=0

2x=182x=18

x=9x=9


315x+y=031-5x+y=0 putting the value of x in this equation,

31(5×9)+y=031-(5\times 9)+y=0

y=14y=14



x=9,x=9, y=14y=14

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS