Prove that every non-trivial subgroup of a cyclic group has finite index. Hence prove that (Q,+) is not cyclic.
Given, G is a cylic group.
Therefore, G=<a>.
And H is subgroup of G.
H=<a^i>.
Index,
"\\dfrac{G}{H} ={a\\hat{j}+<a\\hat{i}>}"
If j>i then by division algorithm, j=ir+s
Then "a\\hat{j}+<a\\hat{i}>=a\\hat{s}+<a\\hat{i}>"
So, "\\dfrac{G}{H}={a\\hat{s}+<a\\hat{i}>, 0<=s<i}"
"O(\\dfrac{G}{H})" = finite =index of H.
For( Q,+), choose H="<\\dfrac{1}{2}>"
Clearly "O(\\dfrac{G}{H})=" inifinte.
So, G=(Q,+) is not cyclic.
Comments
Leave a comment