Question #186509

a. Use complete square method to solve for x and sketch (x)=2x^2-9x+10

b. What is the range of the parabola?

c. What is the domain of the parabola?

d. Sketch your graph and label your vertex, x intercept and y intercept.

e. Use the Quadratic formula to verify the x intercepts.


1
Expert's answer
2021-04-29T12:36:35-0400

Solution.


2x29x+10==2(x2294x+8116)818+10==2(x94)218.2x^2-9x+10=\newline= 2(x^2-2\cdot\frac{9}{4}x+\frac{81}{16})-\frac{81}{8}+10=\newline =2(x-\frac{9}{4})^2-\frac{1}{8}.

The graph of y=2(x94)218y=2(x-\frac{9}{4})^2-\frac{1}{8} is congruent to the basic parabola y=x2y=x^2 , but is translated 94\frac{9}{4} units to the right, 18\frac{1}{8} units down and

compression 2 times to the y-axis.

Domain = R.

Range = (18,).(-\frac{1}{8}, \infty).

Vertex (94,18).(\frac{9}{4},-\frac{1}{8}).

Y intercept (0,10).(0,10).

X intercept 2x29x+10=02x^2-9x+10=0

D=814210=1,D=81-4•2•10=1,

x1=914=2,x2=9+14=2.5.x_1=\frac{9-1}{4}=2,\newline x_2=\frac{9+1}{4}=2.5.

So, (2,0),(2.5,0).(2,0),(2.5,0).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS