Given, the function "y=2(16\/9)^{3x}" .
Divide by 2 both side.
"y=2(16\/9)^{3x}\n\\newline\n\\frac{y}{2}=(\\frac{16}{9})^{3x}"
Apply logarithm both side.
"log(\\frac{y}{2})=3xlog(\\frac{16}{9})"
Divide by "log(\\frac{16}{9})" both side.
"\\frac{log(\\frac{y}{2})}{log(\\frac{16}{9})}=3x"
From logarithm property, "log_{b} a=\\frac{log_{e}a}{log_{e}b}".
Then, "log_{\\frac{16}{9}}\\frac{y}{2}=3x".
Thus, the required answer is "log_{\\frac{16}{9}}\\frac{y}{2}=3x".
Comments
Leave a comment