Question #177917

Write the inequality , 3/2<x+1<7/2 in the modulus form


1
Expert's answer
2021-04-15T07:34:14-0400

Given that


32<x+1<72321<x+11<721\frac{3}{2}<x+1<\frac{7}{2} \newline \therefore\:\frac{3}{2}-1<x+1-1<\frac{7}{2}-1


12<x<52\frac{1}{2}<x<\frac{5}{2}


The range of x belong to (1/2 , 5/2).

Now,

12<x<521232<x32<52321<x32<1x32<1\qquad \frac{1}{2}<x<\frac{5}{2}\newline \therefore \quad \frac{1}{2}-\frac{3}{2}<x-\frac{3}{2}<\frac{5}{2}-\frac{3}{2} \newline \therefore \quad -1<x-\frac{3}{2}<1\newline \therefore \quad |x-\frac{3}{2}|<1


Hence the given ineqaulity 32<x+1<72\frac{3}{2}<x+1<\frac{7}{2} in the modulus form is x32<1|x-\frac{3}{2}|<1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS