Write the inequality , 3/2<x+1<7/2 in the modulus form
Given that
32<x+1<72∴ 32−1<x+1−1<72−1\frac{3}{2}<x+1<\frac{7}{2} \newline \therefore\:\frac{3}{2}-1<x+1-1<\frac{7}{2}-123<x+1<27∴23−1<x+1−1<27−1
12<x<52\frac{1}{2}<x<\frac{5}{2}21<x<25
The range of x belong to (1/2 , 5/2).
Now,
12<x<52∴12−32<x−32<52−32∴−1<x−32<1∴∣x−32∣<1\qquad \frac{1}{2}<x<\frac{5}{2}\newline \therefore \quad \frac{1}{2}-\frac{3}{2}<x-\frac{3}{2}<\frac{5}{2}-\frac{3}{2} \newline \therefore \quad -1<x-\frac{3}{2}<1\newline \therefore \quad |x-\frac{3}{2}|<121<x<25∴21−23<x−23<25−23∴−1<x−23<1∴∣x−23∣<1
Hence the given ineqaulity 32<x+1<72\frac{3}{2}<x+1<\frac{7}{2}23<x+1<27 in the modulus form is ∣x−32∣<1|x-\frac{3}{2}|<1∣x−23∣<1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments