Let a,b∈R
f(a)=4a−15
f(b)=4b−15
Assuming f(a) = f(b)
⟹4a−15=4b−15
⟹a=b
Hence f is one to one correspondence since f(a) = f(b) implies a = b
Also let g(a)=15a3 and g(b)=15b3
Assuming g(a) = g(b)
⟹15a3=15b3
⟹a=b
Hence g is one to one correspondence since g(a) = g(b) implies a = b
Comments
Leave a comment