Question #168792

Find s and r if (x+3) is a factor of sx^3 + rx^2 -28x +15 and has a remainder of -60 when divided by(x-3)


1
Expert's answer
2021-03-05T01:04:36-0500

Let us find ss and rr if (x+3)(x+3) is a factor of sx3+rx228x+15sx^3 + rx^2 -28x +15 and has a remainder of 60-60 when divided by (x3)(x-3).


By the polynomial remainder theorem (little Bézout's theorem), the remainder of the division of a polynomial f(x)=sx3+rx228x+15\displaystyle f(x)=sx^3 + rx^2 -28x +15 by a linear polynomial xa\displaystyle x-a is equal to f(a)\displaystyle f(a). Therefore, we have the following system of linear equations


{s(3)3+r(3)228(3)+15=0s33+r32283+15=60\begin{cases} s(-3)^3 + r(-3)^2 -28(-3) +15=0\\ s\cdot 3^3 + r\cdot 3^2 -28\cdot 3 +15=-60 \end{cases}


which is equivalent to the following systems:


{27s+9r+99=027s+9r9=0\begin{cases} -27s + 9r+99=0\\ 27s + 9r-9=0 \end{cases}


{27s+9r+99=018r+90=0\begin{cases} -27s + 9r+99=0\\ 18r+90=0 \end{cases}


{27s=9r99r=5\begin{cases} -27s =-9r-99\\ r=-5 \end{cases}


{27s=54r=5\begin{cases} -27s =-54\\ r=-5 \end{cases}


{s=2r=5\begin{cases} s =2\\ r=-5 \end{cases}


Answer: s=2, r=5.s=2,\ r =-5.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS