Question #168236

P(x) = (u^x. e^-u) / x! and let u=10. Find P(9).


1
Expert's answer
2021-03-02T08:11:17-0500
P(x)=uxeux!P(x) = \dfrac{u^x e^{-u}}{x!}\\

at u = 10 and x =9



P(9)=109×e109!=1099!×e10=109362880×22026.47=1097992965433.6=10000000007992965433.60.12511    125.11×103P(9) = \dfrac{10^{9} \times e^{-10}}{9!}\\ = \dfrac{10^{9} }{9! \times e^{10}}\\ = \dfrac{10^{9} }{362880 \times 22026.47}\\ = \dfrac{10^{9} }{7992965433.6} = \dfrac{1000000000 }{7992965433.6}\\ \simeq 0.12511 \\\implies 125.11 \times 10^{-3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS