Use the rational root theorem to determine the list of all possible rational solutions.
y = 2 x 3 + 5 x 2 + 4
Â
Â
y = 2 x 3 + 5 x 2 + 4
According to the Rational Root Theorem, the zeroes for a rational number  P/Q  Â
PÂ Â is the coefficient of independent term and Q is the coefficient of highest power term.
In this case, the Leading Coefficient is  P = 2 (2x^3)  and the Trailing Constant is  Q = 4.
Therefore, the factor(s) are:
P = 2 = Â Â 1, 2
Q = 4 = 4, 2, 1
PÂ Â QÂ Â P/QÂ Â F(P/Q)Â Â Â Â Â Â Â
 -1     1     -1.00     7.00      Â
 -1     2     -0.50     5.00      Â
 -2     1     -2.00     8.00       Â
-4Â Â Â Â Â 1Â Â Â Â Â -4.00Â Â Â Â Â -44.00Â Â Â Â Â Â Â Â
1Â Â Â Â Â 1Â Â Â Â Â 1.00Â Â Â Â Â 11.00Â Â Â Â Â Â Â Â
1Â Â Â Â Â 2Â Â Â Â Â 0.50Â Â Â Â Â 5.50Â Â Â Â Â Â Â Â
2Â Â Â Â Â 1Â Â Â Â Â 2.00Â Â Â Â Â 40.00Â Â Â Â Â Â Â
 4     1     4.00     212.00  Â
On solving the given polynomial, Followings are the roots:
There are one real root and two complex roots as given below:
Real Root: -2.76
Complex Root: 0.13 + 0.8 i and 0.13 - 0.8 i
Comments
Leave a comment