Question #160394

Find the sum of the terms between the 102nd and the 190th terms in the series

1/10+1/5+3/10+2/5+1/2+....1/10 + 1/5 + 3/10 + 2/5 + 1/2 + ....


1
Expert's answer
2021-02-03T01:28:55-0500
a1=110,a2=15=210,a3=310,a_1=\dfrac{1}{10}, a_2 =\dfrac{1}{5}=\dfrac{2}{10}, a_3=\dfrac{3}{10},

a4=25=410,a5=12=510,...a_4=\dfrac{2}{5}=\dfrac{4}{10}, a_5 =\dfrac{1}{2}=\dfrac{5}{10}, ...

110+15+310+25+12+...=110i=1i\dfrac{1}{10}+\dfrac{1}{5}+\dfrac{3}{10}+\dfrac{2}{5}+\dfrac{1}{2}+...=\dfrac{1}{10}\displaystyle\sum_{i=1}^\infin i

We know that


i=1ni=n(n+1)2\displaystyle\sum_{i=1}^n i=\dfrac{n(n+1)}{2}

Then


i=1101i=101(101+1)2=5151\displaystyle\sum_{i=1}^{101} i=\dfrac{101(101+1)}{2}=5151

i=1190i=190(190+1)2=16235\displaystyle\sum_{i=1}^{190} i=\dfrac{190(190+1)}{2}=16235

i=1190ii=1101i=162355151=11084\displaystyle\sum_{i=1}^{190} i-\displaystyle\sum_{i=1}^{101} i=16235-5151=11084

The sum of the terms between the 102nd and the 190th terms is


110(11084)=1108.4\dfrac{1}{10}(11084)=1108.4



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS