Answer to Question #158232 in Algebra for Rizalyn Putong

Question #158232

Construct a table of valued of the function using the interval of -5 to 5.

a. g(x)= x3+3x-5/x2

1
Expert's answer
2021-01-26T01:48:41-0500

Solution


  • Substitute value for x & get the corresponding g(x)g(x) values.
  • Interval for x values can be chosen as per the requirement. Here the interval is taken as unit 1

g(5)=(5)3+3(5)5(5)2=125150.2=140.2g(4)=(4)3+3(4)5(4)2=64120.3125=76.3125g(3)=(3)3+3(3)5(3)2=2790.5556=36.5556g(2)=(2)3+3(2)5(2)2=861.25=15.25g(1)=(1)3+3(1)5(1)2=135=9g(0)=(0)3+3(0)5(0)2=g(1)=(1)3+3(1)5(1)2=1+35=1g(2)=(2)3+3(2)5(2)2=8+61.25=12.75g(3)=(3)3+3(3)5(3)2=27+90.5556=35.4444g(4)=(4)3+3(4)5(4)2=64+120.3125=75.688g(5)=(5)3+3(5)5(5)2=125+150.2=139.8\qquad\qquad \begin{aligned} g(-5)&=(-5)^3+3(-5)-\frac{5}{(-5)^2}\\ &=-125-15-0.2=-140.2\\ g(-4)&=(-4)^3+3(-4)-\frac{5}{(-4)^2}\\ &=-64-12-0.3125=-76.3125\\ g(-3)&=(-3)^3+3(-3)-\frac{5}{(-3)^2}\\ &=-27-9-0.5556=-36.5556\\ g(-2)&=(-2)^3+3(-2)-\frac{5}{(-2)^2}\\ &=-8-6-1.25=-15.25\\ g(-1)&=(-1)^3+3(-1)-\frac{5}{(-1)^2}\\ &=-1-3-5=-9\\ g(0)&=(0)^3+3(0)-\frac{5}{(-0)^2}\\ &=\infty\\ g(1)&=(1)^3+3(1)-\frac{5}{(1)^2}\\ &=1+3-5=-1\\ g(2)&=(2)^3+3(2)-\frac{5}{(2)^2}\\ &=8+6-1.25=12.75\\ g(3)&=(3)^3+3(3)-\frac{5}{(3)^2}\\ &=27+9-0.5556=35.4444\\ g(4)&=(4)^3+3(4)-\frac{5}{(4)^2}\\ &=64+12-0.3125=75.688\\ g(5)&=(5)^3+3(5)-\frac{5}{(5)^2}\\ &=125+15-0.2=139.8\\ \end{aligned}

  • Then the table is

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment