Solution
- Substitute value for x & get the corresponding g(x) values.
- Interval for x values can be chosen as per the requirement. Here the interval is taken as unit 1
g(−5)g(−4)g(−3)g(−2)g(−1)g(0)g(1)g(2)g(3)g(4)g(5)=(−5)3+3(−5)−(−5)25=−125−15−0.2=−140.2=(−4)3+3(−4)−(−4)25=−64−12−0.3125=−76.3125=(−3)3+3(−3)−(−3)25=−27−9−0.5556=−36.5556=(−2)3+3(−2)−(−2)25=−8−6−1.25=−15.25=(−1)3+3(−1)−(−1)25=−1−3−5=−9=(0)3+3(0)−(−0)25=∞=(1)3+3(1)−(1)25=1+3−5=−1=(2)3+3(2)−(2)25=8+6−1.25=12.75=(3)3+3(3)−(3)25=27+9−0.5556=35.4444=(4)3+3(4)−(4)25=64+12−0.3125=75.688=(5)3+3(5)−(5)25=125+15−0.2=139.8
Comments
Leave a comment