i. f(0)
ii. f(-3)
iii. f(2)
iv. f(-1)
v. f(3)
vi. Domain(f(x))
2. (a) Let f( x/x−2 ) = 3x + 4 find f(x).
(b) Compute difference quotient of the function g(x) = √ x 2 − 9, and simplify your answer.
3. Let f(x) = 1 − x, g(x) = x 2 + bx + c. find b and c such that fog(x) = −X2+ 5x + 4.
"\\mathrm{Given : f(x)=\\sqrt{x+1}-\\dfrac{1}{4-x^2}}\\\\\n\\;\\\\ \n\\textup{i. f(0) = }\\sqrt{0+1}-\\dfrac{1}{4-0^2}=1-\\dfrac{1}{4}=\\dfrac{3}{4}\\\\ \\; \\\\\n\\textup{ii. f(-3) = }\\sqrt{-3+1}-\\dfrac{1}{4-(-3)^2}=\\sqrt{-2}+\\dfrac{1}{5}=\\textup{does not exist}\\\\ \\; \\\\\n\\textup{iii. f(2) = }\\sqrt{2+1}-\\dfrac{1}{4-2^2}=\\sqrt{3}-\\dfrac{1}{0};\\textup{does not exist}\\\\ \\; \\\\"
"\\textup{iv. f(-1) = }\\sqrt{-1+1}-\\dfrac{1}{4-(-1)^2}=0-\\dfrac{1}{4-1}=-\\dfrac{1}{3}\\\\ \\; \\\\\n\\textup{v. f(3) = }\\sqrt{3+1}-\\dfrac{1}{4-(3)^2}=\\sqrt{4}+\\dfrac{1}{5}=2+\\dfrac{1}{5}=\\dfrac{11}{5}\\\\ \\; \\\\"
"\\textup{vi. Domain(f(x)) :-}\\\\ \\; \\\\\n\\textup{Whenever we have a function with a square root, we know that the square root }\\\\ \n\\textup{has to be bigger than or equal to 0.}\\\\ \\; \\\\\n\\sqrt{x+1}\\geq 0 \\\\ \\; \\\\\nx+1\\geq 0 \\\\ \\; \\\\\nx\\geq -1 \\\\ \\; \\\\\n\\textup{For the second part, the denominator must be non-zero. So,}\\\\ \\; \\\\\n4-x^2\\neq 0 \\\\ \\; \\\\\nx^2\\neq 4\\\\ \\; \\\\\nx\\neq 2, x\\neq -2\\\\ \\; \\\\\n\\textup{So our domain is }[-1,\\infty)-\\{2\\}\\\\ \\; \\\\"
"2.\\;\\textup{(a) Given : f}\\left(\\dfrac{x}{x-2} \\right)=3x+4 \\\\ \\; \\\\\n\\implies \\textup{Let }t=\\left(\\dfrac{x}{x-2} \\right)\\\\ \\; \\\\\n\\implies t=\\left(\\dfrac{x-2+2}{x-2} \\right)=1+\\dfrac{2}{x-2}\\\\ \\; \\\\\n\\implies t-1=\\dfrac{2}{x-2}\\\\ \\; \\\\\n\\implies x-2=\\dfrac{2}{t-1}\\\\ \\; \\\\\n\\implies x=2+\\dfrac{2}{t-1}\\\\ \\; \\\\\n\\therefore f(t)=3\\left(2+\\dfrac{2}{t-1} \\right)+4\\\\ \\ \\\\\n\\implies f(t)=6+\\dfrac{6}{t-1}+4=\\dfrac{6}{t-1}+10\\\\ \\; \\\\\n\\textup{Changing the variable from t to x,}\\\\ \\; \\\\\n\\therefore f(x)=\\dfrac{6}{x-1} +10\\\\ \\ \\\\"
"\\textup{(b) Given : }g(x)=\\sqrt{x^2-9}\\\\ \\; \\\\\n\\textup{To find : difference quotient }\\;\\dfrac{g(x+h)-g(x)}{h}\\\\ \\;\\\\\n\\textup{Here, }g(x+h)=\\sqrt{(x+h)^2-9}\\\\ \\; \\\\\n\\therefore \\dfrac{g(x+h)-g(x)}{h}=\\dfrac{\\sqrt{(x+h)^2-9}-\\sqrt{x^2-9}}{h}\\\\ \\; \\\\\n\\textup{Rationalizing the numerator and denominator, we get}\\\\\\;\\\\\n\\therefore \\dfrac{g(x+h)-g(x)}{h}=\\dfrac{\\sqrt{(x+h)^2-9}-\\sqrt{x^2-9}}{h}\\times \n\\dfrac{\\sqrt{(x+h)^2-9}+\\sqrt{x^2-9}}{\\sqrt{(x+h)^2-9}+\\sqrt{x^2-9}}\\\\ \\; \\\\\n\\textup{\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;}=\\dfrac{(x+h)^2-9-(x^2-9)}{h(\\sqrt{(x+h)^2-9}+\\sqrt{x^2-9})}\\\\ \\; \\\\\n\\textup{\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;}=\\dfrac{(x+h)^2-x^2}{h(\\sqrt{(x+h)^2-9}+\\sqrt{x^2-9})}\\\\ \\; \\\\"
"\\textup{\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;}=\\dfrac{(x+h-x)(x+h+x)}{h(\\sqrt{(x+h)^2-9}+\\sqrt{x^2-9})}\\\\ \\; \\\\\n\\textup{\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;}=\\dfrac{h(2x+h)}{h(\\sqrt{(x+h)^2-9}+\\sqrt{x^2-9})}\\\\ \\; \\\\\n\\textup{\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;}=\\dfrac{2x+h}{\\sqrt{(x+h)^2-9}+\\sqrt{x^2-9}}\\\\ \\; \\\\"
"3. \\textup{ Given : }f(x) = 1 \u2212 x, g(x) = x^2 + bx + c. \\\\ \\; \\\\\n\\textup{To find : b and c such that }fog(x) = \u2212x^2+ 5x + 4.\\\\ \\; \\\\\n\\textup{Here, }fog(x)=f(g(x))=f(x^2+bx+c)=1-(x^2+bx+c)=-x^2-bx+(1-c)\\\\ \\; \\\\\n\\because fog(x)=\u2212x^2+ 5x + 4 \\\\ \\; \\\\\n\\implies -x^2-bx+(1-c)=-x^2+5x+4\\\\ \\; \\\\\n\\textup{Comparing both sides , we get}\\\\ \\; \\\\\n-b=5,\\;1-c=4\\\\ \\; \\\\\n\\therefore b=-5,\\;\\;c=-3"
Comments
Leave a comment