(b) Compute difference quotient of the function g(x) = √ x 2 − 9, and simplify your answer.
3. Let f(x) = 1 − x, g(x) = x 2 + bx + c. find b and c such that fog(x) = −X2+ 5x + 4.
1
Expert's answer
2021-03-29T06:29:58-0400
Given:f(x)=x+1−4−x21i. f(0) = 0+1−4−021=1−41=43ii. f(-3) = −3+1−4−(−3)21=−2+51=does not existiii. f(2) = 2+1−4−221=3−01;does not exist
iv. f(-1) = −1+1−4−(−1)21=0−4−11=−31v. f(3) = 3+1−4−(3)21=4+51=2+51=511
vi. Domain(f(x)) :-Whenever we have a function with a square root, we know that the square root has to be bigger than or equal to 0.x+1≥0x+1≥0x≥−1For the second part, the denominator must be non-zero. So,4−x2=0x2=4x=2,x=−2So our domain is [−1,∞)−{2}
2.(a) Given : f(x−2x)=3x+4⟹Let t=(x−2x)⟹t=(x−2x−2+2)=1+x−22⟹t−1=x−22⟹x−2=t−12⟹x=2+t−12∴f(t)=3(2+t−12)+4⟹f(t)=6+t−16+4=t−16+10Changing the variable from t to x,∴f(x)=x−16+10
(b) Given : g(x)=x2−9To find : difference quotient hg(x+h)−g(x)Here, g(x+h)=(x+h)2−9∴hg(x+h)−g(x)=h(x+h)2−9−x2−9Rationalizing the numerator and denominator, we get∴hg(x+h)−g(x)=h(x+h)2−9−x2−9×(x+h)2−9+x2−9(x+h)2−9+x2−9=h((x+h)2−9+x2−9)(x+h)2−9−(x2−9)=h((x+h)2−9+x2−9)(x+h)2−x2
3. Given : f(x)=1−x,g(x)=x2+bx+c.To find : b and c such that fog(x)=−x2+5x+4.Here, fog(x)=f(g(x))=f(x2+bx+c)=1−(x2+bx+c)=−x2−bx+(1−c)∵fog(x)=−x2+5x+4⟹−x2−bx+(1−c)=−x2+5x+4Comparing both sides , we get−b=5,1−c=4∴b=−5,c=−3
Comments