Solution
"\\qquad\\qquad\n\\begin{aligned}\nn=0 \\to u_2&=u_1-\\frac{1}{4}u_0\\\\\nu_2&=\\frac{1}{2}+\\frac{1}{4}=\\frac{3}{4}\\\\\nn=1\\to u_3&=u_2-\\frac{1}{4}u_1\\\\\nu_3&=\\frac{3}{4}-\\frac{1}{8}=\\frac{5}{8}\\\\\n\n\\end{aligned}"
"-1,\\frac{1}{2},\\frac{3}{4},\\frac{5}{8},......."
"\\frac{-1}{1},\\frac{1}{2},\\frac{3}{4},\\frac{5}{8},....."
"\\qquad\\qquad\n\\begin{aligned}\nU_r&=\\frac{2r-1}{2^r}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\nU_n&= \\frac{2n-1}{2^n}\n\\end{aligned}"
2)
"\\qquad\\qquad\n\\begin{aligned}\nS_n&=2-\\frac{(2n+3)}{2^n}\\\\\nn=0\\\\\nS_0&= 2-3=-1=U_0\\cdots(\\checkmark)\\\\\nn=1\\\\\nS_1&= 2-\\frac{5}{2}=\\frac{-1}{2}=U_2\\cdots(\\checkmark)\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\nS_p&= 2-\\frac{(2p+3)}{2^p}\\\\\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\nS_{p+1}&=S_p+U_{p+1}\\\\\n&=2-\\frac{(2p+3)}{2^p}+\\frac{2(p+1)-1}{2^{p+1}}\\\\\n&=2-\\Bigg[\\frac{2(2p+3)-2(p+1)+1}{2^{p+1}}\\Bigg]\\\\\n&= 2-\\Bigg[\\frac{4p+6-2p-2+1}{2^{p+1}}\\Bigg]\\\\\n&= 2-\\frac{(2p+5)}{2^{p+1}}\\\\\n&\\text{rearranging \\, in\\, terms \\,of\\,p+1}\\\\\nS_{p+1}&=2-\\frac{[2(p+1)+3]}{2^{p+1}}\\cdots(\\checkmark)\n\\end{aligned}"
Comments
Leave a comment