Question #156198
A particle P, of mass m, is projected vertically upwards from a point O with speed 2g/k m/s in a medium whose resistance to motion is of magnitude kv per unit mass, where v is the speed of P and k a positive contant.
(i) Show that v(dv/dx) = -g - kv
The particle P attains the highest point H of its path.
(ii) Show further that OH = g/k^2 (2 - In3)metres
Given that P reaches another point M with speed g/2k m/s as it traces its path back to O, the point of projection,
(iii) Prove that HM = g/k^2 ( In2 - 1/2)
1
Expert's answer
2021-01-26T19:12:35-0500

Solution


  • When it goes upwards resistive forces that act on it are its own weight (mg) & the medium resistance (mkv).
  • Then it travels under a deceleration upwards & F=ma in the form F=m(dv/dt) can be written as the deceleration is not constant as F varies with the velocity.
  • Then a differential equation generates & by solving it with respect to relevant variables, answers for the rest can be found.

F=mdvdt=mdvdx×dxdt=mvdvdxmgmkv=mvdvdxgkv=vdvdx\qquad\qquad \begin{aligned} \uparrow F&=m\frac{dv}{dt}=m\frac{dv}{dx}\times\frac{dx}{dt}=mv\frac{dv}{dx}\\ -mg-mkv&=mv\frac{dv}{dx}\\ -g-kv&=v\frac{dv}{dx}\\ \\ \end{aligned}

  • Then separate variables & proceed forward

v(g+kv).dv=dx1k[(kv+g)g(g+kv)].dv=dx1k[1g(g+kv)].dv=dx1k[dvg(g+kv).dv]=dx1k[dvgkk(g+kv)dv]=dx1k[vgkln(g+kv)]=x+c\qquad\qquad \begin{aligned} \frac{v}{(g+kv)}.dv&=-dx\\ \frac{1}{k}\bigg[\frac{(kv+g)-g}{(g+kv)}\bigg].dv&=-dx\\ \frac{1}{k}\bigg[1-\frac{g}{(g+kv)}\bigg].dv&=-dx\\ \frac{1}{k}\bigg[dv-\frac{g}{(g+kv)}.dv\bigg]&=-dx\\ \frac{1}{k}\bigg[\int dv-\frac{g}{k}\int \frac{k}{(g+kv)}dv\bigg]&=-\int dx\\ \frac{1}{k}\bigg[v-\frac{g}{k}ln(g+kv)\bigg]&=-x+c \end{aligned}

  • Solving for the arbitrary constant c, a general equation for the velocity & distance can be obtained.
  • Substitute the values: @ x=0m v=2g/k

1k[2gkgkln(g+2g)]=0+cc=gk2[2ln(3g)]\qquad\qquad \begin{aligned} \frac{1}{k}\bigg[\frac{2g}{k}-\frac{g}{k}ln(g+2g)\bigg]&=-0+c\\ c&= \frac{g}{k^2}\big[2-ln(3g)\big] \end{aligned}

  • Then the general equation is

1k[vgkln(g+kv)]=x+gk2[2ln(3g)]\qquad\qquad \begin{aligned} \frac{1}{k}\bigg[v-\frac{g}{k}ln(g+kv)\bigg]&=-x+\frac{g}{k^2}\big[2-ln(3g)\big] \end{aligned}

  • Then at the highest point: x=OH & v=0

1k[0gkln(g)]=OH+gk2[2ln(3g)]OH=gk2[2ln(3g)]+gk2ln(g)=gk2[2(ln(3g)ln(g))]=gk2[2ln3]\qquad\qquad \begin{aligned} \frac{1}{k}\bigg[0-\frac{g}{k}ln(g)\bigg]&=-OH+\frac{g}{k^2}\big[2-ln(3g)\big]\\ OH&= \frac{g}{k^2}\big[2-ln(3g)\big]+\frac{g}{k^2}ln(g)\\ &=\frac{g}{k^2}\big[2-(ln(3g)-ln(g))\big]\\ &=\frac{g}{k^2}\big[2-ln3\big] \end{aligned}

  • Then at the return @ M, x=OM=(OH-HM) & v=-g/2k. Mind the direction of the velocity.

1k[g2kgkln(g+(g2))]=(OHHM)+gk2[2ln(3g)]gk2[12+ln(g2)]=(HMOH)+gk2[2ln(3g)]HM=OHgk2[2ln(3g)]gk2[12+ln(g2)]=gk2[2ln3]gk2[2ln(3g)]gk2[12+ln(g2)]=gk2[2ln32+ln(3g)12ln(g2)]=gk2[ln(3g3×g2)12]=gk2[ln212]\qquad\qquad \begin{aligned} \frac{1}{k}\bigg[-\frac{g}{2k}-\frac{g}{k}ln(g+(-\frac{g}{2}))\bigg]&=-(OH-HM)+\frac{g}{k^2}\big[2-ln(3g)\big]\\ -\frac{g}{k^2}\bigg[\frac{1}{2}+ln(\frac{g}{2})\bigg]&=(HM-OH)+\frac{g}{k^2}\big[2-ln(3g)\big]\\ HM&= OH-\frac{g}{k^2}\big[2-ln(3g)\big]-\frac{g}{k^2}\bigg[\frac{1}{2}+ln(\frac{g}{2})\bigg]\\ &=\frac{g}{k^2}\big[2-ln3\big]-\frac{g}{k^2}\big[2-ln(3g)\big]-\frac{g}{k^2}\bigg[\frac{1}{2}+ln(\frac{g}{2})\bigg]\\ &=\frac{g}{k^2}\bigg[2-ln3-2+ln(3g)-\frac{1}{2}-ln(\frac{g}{2})\bigg]\\ &=\frac{g}{k^2}\bigg[ln(\frac{3g}{3\times\frac{g}{2}})-\frac{1}{2}\bigg]\\ &=\frac{g}{k^2}\bigg[ln2-\frac{1}{2}\bigg] \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS