Solution
"\\qquad\\qquad\n\\begin{aligned}\n\\uparrow F&=m\\frac{dv}{dt}=m\\frac{dv}{dx}\\times\\frac{dx}{dt}=mv\\frac{dv}{dx}\\\\\n-mg-mkv&=mv\\frac{dv}{dx}\\\\\n-g-kv&=v\\frac{dv}{dx}\\\\\n\\\\\n\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\frac{v}{(g+kv)}.dv&=-dx\\\\\n\\frac{1}{k}\\bigg[\\frac{(kv+g)-g}{(g+kv)}\\bigg].dv&=-dx\\\\\n\\frac{1}{k}\\bigg[1-\\frac{g}{(g+kv)}\\bigg].dv&=-dx\\\\\n\\frac{1}{k}\\bigg[dv-\\frac{g}{(g+kv)}.dv\\bigg]&=-dx\\\\\n\\frac{1}{k}\\bigg[\\int dv-\\frac{g}{k}\\int \\frac{k}{(g+kv)}dv\\bigg]&=-\\int dx\\\\\n\\frac{1}{k}\\bigg[v-\\frac{g}{k}ln(g+kv)\\bigg]&=-x+c\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\frac{1}{k}\\bigg[\\frac{2g}{k}-\\frac{g}{k}ln(g+2g)\\bigg]&=-0+c\\\\\nc&= \\frac{g}{k^2}\\big[2-ln(3g)\\big]\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\frac{1}{k}\\bigg[v-\\frac{g}{k}ln(g+kv)\\bigg]&=-x+\\frac{g}{k^2}\\big[2-ln(3g)\\big]\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\frac{1}{k}\\bigg[0-\\frac{g}{k}ln(g)\\bigg]&=-OH+\\frac{g}{k^2}\\big[2-ln(3g)\\big]\\\\\nOH&= \\frac{g}{k^2}\\big[2-ln(3g)\\big]+\\frac{g}{k^2}ln(g)\\\\\n&=\\frac{g}{k^2}\\big[2-(ln(3g)-ln(g))\\big]\\\\\n&=\\frac{g}{k^2}\\big[2-ln3\\big] \n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\frac{1}{k}\\bigg[-\\frac{g}{2k}-\\frac{g}{k}ln(g+(-\\frac{g}{2}))\\bigg]&=-(OH-HM)+\\frac{g}{k^2}\\big[2-ln(3g)\\big]\\\\\n-\\frac{g}{k^2}\\bigg[\\frac{1}{2}+ln(\\frac{g}{2})\\bigg]&=(HM-OH)+\\frac{g}{k^2}\\big[2-ln(3g)\\big]\\\\\nHM&= OH-\\frac{g}{k^2}\\big[2-ln(3g)\\big]-\\frac{g}{k^2}\\bigg[\\frac{1}{2}+ln(\\frac{g}{2})\\bigg]\\\\\n&=\\frac{g}{k^2}\\big[2-ln3\\big]-\\frac{g}{k^2}\\big[2-ln(3g)\\big]-\\frac{g}{k^2}\\bigg[\\frac{1}{2}+ln(\\frac{g}{2})\\bigg]\\\\\n&=\\frac{g}{k^2}\\bigg[2-ln3-2+ln(3g)-\\frac{1}{2}-ln(\\frac{g}{2})\\bigg]\\\\\n&=\\frac{g}{k^2}\\bigg[ln(\\frac{3g}{3\\times\\frac{g}{2}})-\\frac{1}{2}\\bigg]\\\\\n&=\\frac{g}{k^2}\\bigg[ln2-\\frac{1}{2}\\bigg]\n\\end{aligned}"
Comments
Leave a comment