Answer to Question #135576 in Algebra for Omar

Question #135576
What can be said about the domain of the function:
f \circ g
where
f(y)= \frac{4}{y-2}
and
g(x)= \frac{5}{3x-1}
Express it in terms of a union of intervals of real numbers?
obtain the graph of f , g , and f \circ g .
1
Expert's answer
2020-09-30T18:54:58-0400

Here, f(y)=4y2  and  g(x)=53x1.f(y)=\dfrac{4}{y-2}\;and\;g(x)=\dfrac{5}{3x-1}.\\ \\


To  find  :Domain  of  fg.\mathbf{To\;find\;: Domain \;of\;f \circ g.}


Now,  (fg)(z)=f(g(z))=f(53z1)=453z12\mathbf{Now,\;(f\circ g)(z)=f(g(z))=f\bigg(\dfrac{5}{3z-1}\bigg)=\dfrac{4}{\dfrac{5}{3z-1}-2} }


=452(3z1)3z1=4(3z1)56z+2=12z476z\mathbf{=\dfrac{4}{\dfrac{5-2(3z-1)}{3z-1}}=\dfrac{4(3z-1)}{5-6z+2}=\dfrac{12z-4}{7-6z}}


Clearly,  fg  is  defined  on  R  except  when  the  denominator  is  zero,i.e.,  when\mathbf{Clearly,\; f\circ g \; is\; defined\;on\;\R\; except\;when\; the\; denominator\;is\;zero,i.e.,\; when}

76z=0      z=767-6z=0\;\implies z=\dfrac{7}{6}


So,  domain  of  fg=R{76}=(,76)(76,)\mathbf{So,\;domain\;of\;f\circ g=\R-\{{\dfrac{7}{6}}\}=(-\infty,\dfrac{7}{6})\cup(\dfrac{7}{6},-\infty)}


Graph of f :-




Graph of g :-




Graph of f o g :-





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment