Question #134072
Form the forth degree equation two of whose roots are 1+√3 and 2-i
1
Expert's answer
2020-09-21T15:49:33-0400

Since imaginary roots occur in the form of conjugate pairs then the other two roots will be

13   &   2+i1-\sqrt3 \ \ \ \& \ \ \ 2+i

Sum of roots = 66

products of roots = -10

Σαβ=(1+3){13+(2+i)+(2i)}+(13){(2+i)+(2i)}+(2+i)(2i)=2+43+443+5=11\varSigma\alpha\beta=(1+\sqrt3)\{ 1-\sqrt3+(2+i)+(2-i)\}+(1-\sqrt3)\{(2+i)+(2-i)\}+(2+i)(2-i)\\=2+4\sqrt3+4-4\sqrt3+5=11

Σαβγ=(1+3)(13)(2+i)+(1+3)(13)(2i)+(1+3)(2+i)(2i)+(13)(2+i)(2i)=42i4+2i+5+53+553=2\varSigma\alpha\beta\gamma=(1+\sqrt3)(1-\sqrt3)(2+i)+(1+\sqrt3)(1-\sqrt3)(2-i)+(1+\sqrt3)(2+i)(2-i)+(1-\sqrt3)(2+i)(2-i)\\=-4-2i-4+2i+5+5\sqrt3+5-5\sqrt3=2


equation: x46x3+11x22x10=0x^4-6x^3+11x^2-2x-10=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS