Since imaginary roots occur in the form of conjugate pairs then the other two roots will be
1−3 & 2+i
Sum of roots = 6
products of roots = -10
Σαβ=(1+3){1−3+(2+i)+(2−i)}+(1−3){(2+i)+(2−i)}+(2+i)(2−i)=2+43+4−43+5=11
Σαβγ=(1+3)(1−3)(2+i)+(1+3)(1−3)(2−i)+(1+3)(2+i)(2−i)+(1−3)(2+i)(2−i)=−4−2i−4+2i+5+53+5−53=2
equation: x4−6x3+11x2−2x−10=0
Comments