Since imaginary roots occur in the form of conjugate pairs then the other two roots will be
1−3 & 2+i1-\sqrt3 \ \ \ \& \ \ \ 2+i1−3 & 2+i
Sum of roots = 666
products of roots = -10
Σαβ=(1+3){1−3+(2+i)+(2−i)}+(1−3){(2+i)+(2−i)}+(2+i)(2−i)=2+43+4−43+5=11\varSigma\alpha\beta=(1+\sqrt3)\{ 1-\sqrt3+(2+i)+(2-i)\}+(1-\sqrt3)\{(2+i)+(2-i)\}+(2+i)(2-i)\\=2+4\sqrt3+4-4\sqrt3+5=11Σαβ=(1+3){1−3+(2+i)+(2−i)}+(1−3){(2+i)+(2−i)}+(2+i)(2−i)=2+43+4−43+5=11
Σαβγ=(1+3)(1−3)(2+i)+(1+3)(1−3)(2−i)+(1+3)(2+i)(2−i)+(1−3)(2+i)(2−i)=−4−2i−4+2i+5+53+5−53=2\varSigma\alpha\beta\gamma=(1+\sqrt3)(1-\sqrt3)(2+i)+(1+\sqrt3)(1-\sqrt3)(2-i)+(1+\sqrt3)(2+i)(2-i)+(1-\sqrt3)(2+i)(2-i)\\=-4-2i-4+2i+5+5\sqrt3+5-5\sqrt3=2Σαβγ=(1+3)(1−3)(2+i)+(1+3)(1−3)(2−i)+(1+3)(2+i)(2−i)+(1−3)(2+i)(2−i)=−4−2i−4+2i+5+53+5−53=2
equation: x4−6x3+11x2−2x−10=0x^4-6x^3+11x^2-2x-10=0x4−6x3+11x2−2x−10=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments