Since imaginary roots occur in the form of conjugate pairs then the other two roots will be
1 − 3 & 2 + i 1-\sqrt3 \ \ \ \& \ \ \ 2+i 1 − 3 & 2 + i
Sum of roots = 6 6 6
products of roots = -10
Σ α β = ( 1 + 3 ) { 1 − 3 + ( 2 + i ) + ( 2 − i ) } + ( 1 − 3 ) { ( 2 + i ) + ( 2 − i ) } + ( 2 + i ) ( 2 − i ) = 2 + 4 3 + 4 − 4 3 + 5 = 11 \varSigma\alpha\beta=(1+\sqrt3)\{ 1-\sqrt3+(2+i)+(2-i)\}+(1-\sqrt3)\{(2+i)+(2-i)\}+(2+i)(2-i)\\=2+4\sqrt3+4-4\sqrt3+5=11 Σ α β = ( 1 + 3 ) { 1 − 3 + ( 2 + i ) + ( 2 − i )} + ( 1 − 3 ) {( 2 + i ) + ( 2 − i )} + ( 2 + i ) ( 2 − i ) = 2 + 4 3 + 4 − 4 3 + 5 = 11
Σ α β γ = ( 1 + 3 ) ( 1 − 3 ) ( 2 + i ) + ( 1 + 3 ) ( 1 − 3 ) ( 2 − i ) + ( 1 + 3 ) ( 2 + i ) ( 2 − i ) + ( 1 − 3 ) ( 2 + i ) ( 2 − i ) = − 4 − 2 i − 4 + 2 i + 5 + 5 3 + 5 − 5 3 = 2 \varSigma\alpha\beta\gamma=(1+\sqrt3)(1-\sqrt3)(2+i)+(1+\sqrt3)(1-\sqrt3)(2-i)+(1+\sqrt3)(2+i)(2-i)+(1-\sqrt3)(2+i)(2-i)\\=-4-2i-4+2i+5+5\sqrt3+5-5\sqrt3=2 Σ α β γ = ( 1 + 3 ) ( 1 − 3 ) ( 2 + i ) + ( 1 + 3 ) ( 1 − 3 ) ( 2 − i ) + ( 1 + 3 ) ( 2 + i ) ( 2 − i ) + ( 1 − 3 ) ( 2 + i ) ( 2 − i ) = − 4 − 2 i − 4 + 2 i + 5 + 5 3 + 5 − 5 3 = 2
equation: x 4 − 6 x 3 + 11 x 2 − 2 x − 10 = 0 x^4-6x^3+11x^2-2x-10=0 x 4 − 6 x 3 + 11 x 2 − 2 x − 10 = 0
Comments