f(x)=xf(x) = \sqrt xf(x)=x
x1=4,x2=121x_1=4, x_2 = 121x1=4,x2=121
Main formula: A(x)=ΔyΔx=f(x+h)−f(x)hA(x) = \frac{\Delta y}{ \Delta x} = \frac{f(x+h) -f(x)}{h}A(x)=ΔxΔy=hf(x+h)−f(x)
Find f(x+h)f(x+h)f(x+h) :
f(x+h)=x+hf(x+h) = \sqrt {x+h}f(x+h)=x+h
Find hhh:
h=x2−x1=121−4=117h = x_2 - x_1 = 121 - 4 = 117h=x2−x1=121−4=117
Find the average rate of change by using our main formula:
A(x)=f(x+h)−f(x)h=4+117−4117=11−2117=9117=13A(x) = \frac{f(x+h) - f(x)}{h} = \frac{\sqrt{4+117} - \sqrt{4}}{117} = \frac{11 - 2}{117} = \frac{9}{117} = \frac{1}{3}A(x)=hf(x+h)−f(x)=1174+117−4=11711−2=1179=31
The answer is: 13\bold{\frac{1}{3}}31
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments