Question #130449
Use the graph to find the following.
(a) the domain of f
(b) the range of f  
(c) the x-intercepts
(d) the y-intercept
(e) intervals on which f is increasing
(f) intervals on which f is decreasing
(g) intervals on which f is constant
(h) the number at which f has a relative minimum
(i) the relative minimum of f   
(j) f(0)(k) The values of x for which f(x)=3(l) Is f even, odd or neither?
The 1st coordinate is -6,24. The 2nd coordinate is 0,24.The 3rd coordinate is 5,-1.The 4th coordinate is 10,26.
1
Expert's answer
2020-09-01T17:32:06-0400


The function is


f(x)={24x<0ax2+bx+cx0f(x)= \begin{cases} 24 & x<0 \\ ax^2+bx+c &x\geq0 \end{cases}

f(0)=24:24=cf(0)=24: 24=c

f(5)=1:1=a(5)2+b(5)+24f(5)=-1: -1=a(5)^2+b(5)+24

f(10)=26:26=a(10)2+b(10)+24f(10)=26: 26=a(10)^2+b(10)+24


25a+5b=25100a+10b=2\begin{matrix} 25a+5b=-25 \\ 100a+10b=2 \end{matrix}

b=5a525a=26\begin{matrix} b=-5a-5 \\ 25a=26 \end{matrix}


a=1.04b=10.2\begin{matrix} a=1.04 \\ b=-10.2 \end{matrix}


f(x)={24x<01.04x210.2x+cx0f(x)= \begin{cases} 24 & x<0 \\ 1.04x^2-10.2x+c &x\geq0 \end{cases}

xvertex=b2a=10.22(1.04)=25552x_{vertex}=-\dfrac{b}{2a}=-\dfrac{-10.2}{2(1.04)}=\dfrac{255}{52}

yvertex=1.04(25552)210.2(25552)+24=105104y_{vertex}=1.04(\dfrac{255}{52})^2-10.2(\dfrac{255}{52})+24=-\dfrac{105}{104}


f(0)=24f(0)=24


y=0:1.04x210.2x+24=0y=0: 1.04x^2-10.2x+24=0

1.04x210.2x+24=01.04x^2-10.2x+24=0

26x2255x+600=026x^2-255x+600=0

x=255±(255)24(26)(600)2(26)=255±510552x=\dfrac{255\pm\sqrt{(-255)^2-4(26)(600)}}{2(26)}=\dfrac{255\pm5\sqrt{105}}{52}

x1=255510552,x2=255+510552x_1=\dfrac{255-5\sqrt{105}}{52}, x_2=\dfrac{255+5\sqrt{105}}{52}

f(x)=3=1.04x210.2x+24f(x)=3=1.04x^2-10.2x+24


1.04x210.2x+21=01.04x^2-10.2x+21=0

26x2255x+525=026x^2-255x+525=0

x=255±(255)24(26)(525)2(26)=255±541752x=\dfrac{255\pm\sqrt{(-255)^2-4(26)(525)}}{2(26)}=\dfrac{255\pm5\sqrt{417}}{52}

x1=255541752,x2=255+541752x_1=\dfrac{255-5\sqrt{417}}{52}, x_2=\dfrac{255+5\sqrt{417}}{52}

(a) Domain: (,)(-\infin,\infin)


(b) Range: (105104,)( -\dfrac{105}{104}, \infin)


(c) the x-intercepts

(255510552,0),(255+510552,0)(\dfrac{255-5\sqrt{105}}{52}, 0), (\dfrac{255+5\sqrt{105}}{52}, 0)


(d) the y-intercept

(0,24)(0,24)


(e) intervals on which f is increasing

(25552,)(\dfrac{255}{52}, \infin)


(f) intervals on which f is decreasing

(0,25552)(0, \dfrac{255}{52})


(g) intervals on which f is constant

(,0)(-\infin, 0)


(h) the number at which f has a relative minimum

25552\dfrac{255}{52}


(i) the relative minimum of f

105104-\dfrac{105}{104}


(j) f(0)

2424


(k) The values of x for which f(x)=3

255541752,255+541752\dfrac{255-5\sqrt{417}}{52}, \dfrac{255+5\sqrt{417}}{52}


(l) Is f even, odd or neither?

The function f is neither even nor odd.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS