6 + log (16x2 − 64) = log (4x + 8) + 8
Move terms
"log \u2061 (16x^2\u221264) - log (4x + 8) = 8 - 6"
"log \u2061 (16x^2 \u2212 64) - log (4x + 8) = 2"
From
"log (x) - log (y) = log (x\/y)"
"log \u2061 [(16x^2 \u2212 64)\/(4x + 8)] = 2"
Factor 4 out from expression.
"log \u2061 [4(4x^2 \u2212 16)\/4(x + 2)] = 2"
"log \u2061 [4x4(x^2 \u2212 4)\/4(x + 2)] = 2"
"log \u2061 [4(x^2 \u2212 4)\/(x + 2)] = 2"
Since from: "a^2 - b^2 = (a-b) (a+b)"
"log \u2061 [4(x \u2212 2)(x+2)\/4(x + 2)] = 2"
The expression simplifies to:
"log \u2061 [4(x-2)] = 2"
Since 2 = log 100
"log \u2061 [4(x-2)] = log100"
"[4(x-2)] = 100"
"4x-8= 100"
"4x= 108"
"x=27"
The answer is D = 27
Comments
Leave a comment