"1)\\; y_1 - 3x - 1 = 0, \\; x,y_3\\in \\R"
"2)\\; y_2+4= x^2, \\; x \\in \\R, y_2 \\in [-4;+\\infty)"
"3) \\; y_3=\\sqrt{5x}, \\; x\\in[0; +\\infty), y_3\\in[0; +\\infty)"
"4)\\; y_4-3|x+3|=0, \\; x \\in \\R, y_4\\in[0;+\\infty)"
"5) \\; y_5 = \\dfrac{x^2}{5}= y_3^{-1}, \\;x,y_5\\in[0;+\\infty)" (we decide here to consider "x\\in[0;+\\infty)" instead of "x\\in\\R" )
"6)\\; y_6 - \\dfrac{x^3}{10}=0, \\; x,y_6\\in\\R"
"7) \\; (x+4)^2+(y-14)^2 \\le 0 \\Rightarrow x=-4, y=14"
"8) \\; y_8 = |x|-x^3, \\; x,y_8\\in\\R"
"9) \\; y_9 -x^2-\\sqrt{x} = 7,\\; x,y_9\\in[0; +\\infty)"
"10) \\; |x+8|+|y_{10}-7| \\le 0 \\Rightarrow x=-8, y_{10}=7"
"11)\\; y_{11}^2=121 \\Rightarrow y_{11}=\\pm11, x\\in \\R"
Comments
Leave a comment