Doing dot product of ((3−i4),(−43+i))((3- \frac{i}{4}),(\frac{-4}{3} + i))((3−4i),(3−4+i)) and ((25−2i),(−5−2i2))((\frac{2}{5} - 2i),(\frac{-5-2i}{2}))((52−2i),(2−5−2i))
Product = ((3−i4),(−43+i))((3- \frac{i}{4}),(\frac{-4}{3} + i))((3−4i),(3−4+i)) * ((25−2i),(−5−2i2))((\frac{2}{5} - 2i),(\frac{-5-2i}{2}))((52−2i),(2−5−2i))
=( (3−i4)(3- \frac{i}{4})(3−4i) * (25−2i)(\frac{2}{5} - 2i)(52−2i) , (−43+i)(\frac{-4}{3} + i)(3−4+i) * (−5−2i2)(\frac{-5-2i}{2})(2−5−2i) )
solving it we get,
= ((710−6110i),(73−76i))((\frac{7}{10} - \frac{61}{10}i) , (\frac{7}{3} - \frac{7}{6}i))((107−1061i),(37−67i))
since i2=−1i^{2} = -1i2=−1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment