Question #112746
In Writing explain how to find the asymptote of y=- 3/x-2 +11
1
Expert's answer
2020-04-28T18:47:31-0400

The equations of slant asymptotes are usually sought in the form y = kx + b. By definition, asymptotes:

limx(kx+bf(x))\lim\limits_{x\rarr \infty}(kx+b- f(x))\\

We find the coefficient k:

k=limxf(x)xk=limx3x2+11x=limx11x25x22x=0k=\lim\limits_{x\rarr \infty}\frac{f(x)}{x}\\ k=\lim\limits_{x\rarr \infty}\frac{\frac{-3}{x-2}+11}{x}=\lim\limits_{x\rarr \infty}\frac{11x-25}{x^2-2x}=0\\

We find the coefficient b:

b=limxf(x)kxb=limx3x2+110x=limx11x25x2=11b=\lim\limits_{x\rarr \infty}{f(x)}-{kx}\\ b=\lim\limits_{x\rarr \infty}\frac{-3}{x-2}+11-0x=\lim\limits_{x\rarr \infty}\frac{11x-25}{x-2}=11\\

We obtain the equation of horizontal asymptote:

y=11y=11\\

Find the vertical asymptotes. To do this, define the points of discontinuity:

x1=2

Find the asymptotic behaviour at x = 2:

limx2+03x2+11=limx203x2+11=+\lim\limits_{x\rarr2+0 }\frac{-3}{x-2}+11=-\infty\\ \lim\limits_{x\rarr2-0 }\frac{-3}{x-2}+11=+\infty

x1 = 2 is a discontinuity point of the second kind and x=2 is a vertical asymptote.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS