The equations of slant asymptotes are usually sought in the form y = kx + b. By definition, asymptotes:
"\\lim\\limits_{x\\rarr \\infty}(kx+b- f(x))\\\\"
We find the coefficient k:
"k=\\lim\\limits_{x\\rarr \\infty}\\frac{f(x)}{x}\\\\\nk=\\lim\\limits_{x\\rarr \\infty}\\frac{\\frac{-3}{x-2}+11}{x}=\\lim\\limits_{x\\rarr \\infty}\\frac{11x-25}{x^2-2x}=0\\\\"
We find the coefficient b:
"b=\\lim\\limits_{x\\rarr \\infty}{f(x)}-{kx}\\\\\nb=\\lim\\limits_{x\\rarr \\infty}\\frac{-3}{x-2}+11-0x=\\lim\\limits_{x\\rarr \\infty}\\frac{11x-25}{x-2}=11\\\\"
We obtain the equation of horizontal asymptote:
"y=11\\\\"
Find the vertical asymptotes. To do this, define the points of discontinuity:
x1=2
Find the asymptotic behaviour at x = 2:
"\\lim\\limits_{x\\rarr2+0 }\\frac{-3}{x-2}+11=-\\infty\\\\\n\\lim\\limits_{x\\rarr2-0 }\\frac{-3}{x-2}+11=+\\infty"
x1 = 2 is a discontinuity point of the second kind and x=2 is a vertical asymptote.
Comments
Leave a comment