By binomial theorem
"(x+y)^n=\\sum\\limits_{k=0}^{n}\\begin{pmatrix}\n n \\\\\n k\n\\end{pmatrix}x^{n-k}y^k=\\\\\n\\sum\\limits_{k=0}^{n}\\cfrac{n!}{(n-k)!k!}x^{n-k}y^k\\\\\nax^2=\\cfrac{6!}{(6-2)!2!}3^{4}(-2x)^2=4860x^2\\\\\nbx^3=\\cfrac{6!}{(6-3)!3!}3^{3}(-2x)^3=-4320x^3\\\\\n\\cfrac{a}{b}=\\cfrac{4860}{-4320}=-1.125"
Comments
Leave a comment