"Let\\;x\\;-\\;number\\;of\\;type\\;1\\;people,\\;\\\\y\\;-\\;type\\;2,\\;10z\\;-\\;type3.\\\\x,y,z\\geq0\\\\It's\\;obvious\\;that\\;number\\;of\\;type\\;3\\;people\\\\divides\\;by\\;10,\\;because\\;there\\;should\\;be\\\\whole\\;number\\;of\\;plates.\\\\x\\;people\\;-\\;10x\\;plates\\\\y\\;people\\;-\\;y\\;plates\\;\\\\10z\\;people\\;-\\;z\\;plates\\\\x+y+10z\\;=\\;100\\;=\\;10x+y+z\\\\Substract\\;(x+y+z)\\;from\\;both\\;sides.\\\\9z=4x\\Rightarrow z\\vdots4\\\\10z\\leq x+y+10z\\leq100\\Rightarrow z\\leq10\\\\\\left.\\begin{array}{r}z\\leq10\\\\z\\vdots4\\end{array}\\right\\}\\Rightarrow z=0,\\;4,\\;8\\\\(1)\\;z=0\\Rightarrow4x=9\\times0=0\\Rightarrow x=0\\\\y=100\\\\(0,\\;100,\\;0)\\\\(2)\\;z=4\\Rightarrow4x=9\\times4=36\\Rightarrow x=9\\\\y=100-9-4\\times10=51\\\\(9,\\;51,\\;40)\\\\(3)\\;z=8\\Rightarrow4x=9\\times8=72\\Rightarrow x=18\\\\y=100-18-8\\times10=2\\\\(18,\\;2,\\;80)"
Comments
Leave a comment