Answer to Question #110947 in Algebra for Madhav

Question #110947
Let Px be a quadratic polynomial such that for distinct realms alpha and beta p-alpha =alpha p-beta=beta show that alpha and beta are roots of p(p(x)) -x=0
1
Expert's answer
2020-04-20T18:35:46-0400

Let P(x)P(x) be a quadratic polynomial such that for distinct realms α\alpha and β\beta P(α)=α,P(β)=βP(-\alpha) =\alpha, P(-\beta)=\beta show that alpha and beta are roots of P(P(x))x=0P(P(x)) -x=0


Let P(x)=a0x2+a1x+a2,a0,a1,a2R,a00P(x)=a_0x^2+a_1x+a_2, a_0,a_1,a_2\in R, a_0\neq0

P(α)=a0α2a1α+a2=αa0α2+a2=α+a1αP(-\alpha)=a_0\alpha^2-a_1\alpha+a_2=\alpha\\ a_0\alpha^2+a_2=\alpha+a_1\alpha

P(P(x))x=a0(a0x2+a1x+a2)2++a1(a0x2+a1x+a2)+a2xP(P(x))-x=a_0(a_0x^2+a_1x+a_2)^2+\\ +a_1(a_0x^2+a_1x+a_2)+a_2-x

Then

P(P(α))α=a0(a0α2+a1α+a2)2++a1(a0α2+a1α+a2)+a2α==a0(α+2a1α)2+a1(α+2a1α)+a2α==a0α2+4a0a1α2+4a0a12α2+a1α+2a12α++a2α=α+a1α+4a0a1α2+4a0a12α2++a1α+2a12αα==4a0a1α2+4a0a12α2++2a1α+2a12α=4a0a1α2(1+a1)++2a1α(1+a1)==2a1α(1+a1)(2a0α+1)=0P(P(\alpha))-\alpha=a_0(a_0\alpha^2+a_1\alpha+a_2)^2+\\ +a_1(a_0\alpha^2+a_1\alpha+a_2)+a_2-\alpha=\\ =a_0(\alpha+2a_1\alpha)^2+a_1(\alpha+2a_1\alpha)+a_2-\alpha=\\ =a_0\alpha^2+4a_0a_1\alpha^2+4a_0a_1^2\alpha^2+a_1\alpha+2a_1^2\alpha+\\ +a_2-\alpha=\alpha+a_1\alpha+4a_0a_1\alpha^2+4a_0a_1^2\alpha^2+\\ +a_1\alpha+2a_1^2\alpha-\alpha=\\ =4a_0a_1\alpha^2+4a_0a_1^2\alpha^2+\\ +2a_1\alpha+2a_1^2\alpha=4a_0a_1\alpha^2(1+a_1)+\\ +2a_1\alpha(1+a_1)=\\=2a_1\alpha(1+a_1)(2a_0\alpha+1)=0

becase a1=1a_1=-1

P(1)=a0+a1+a2P(1)=a_0+a_1+a_2 - the sum of the coefficients of the polynomial

a0a1+a21=0a_0-a_1+a_2-1=0


Similarly P(P(β))β=0P(P(\beta))-\beta=0

or

P(P(β))β=P((P(β)))β=P(β)β=P((β))β=(β)β=ββ=0P(P(\beta))-\beta=P(-(-P(\beta)))-\beta=-P(\beta)-\beta=\\ -P(-(-\beta))-\beta=-(-\beta)-\beta=\beta-\beta=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment