Let "P(x)" be a quadratic polynomial such that for distinct realms "\\alpha" and "\\beta" "P(-\\alpha) =\\alpha, P(-\\beta)=\\beta" show that alpha and beta are roots of "P(P(x)) -x=0"
Let "P(x)=a_0x^2+a_1x+a_2, a_0,a_1,a_2\\in R, a_0\\neq0"
"P(-\\alpha)=a_0\\alpha^2-a_1\\alpha+a_2=\\alpha\\\\\na_0\\alpha^2+a_2=\\alpha+a_1\\alpha"
"P(P(x))-x=a_0(a_0x^2+a_1x+a_2)^2+\\\\\n+a_1(a_0x^2+a_1x+a_2)+a_2-x"
Then
"P(P(\\alpha))-\\alpha=a_0(a_0\\alpha^2+a_1\\alpha+a_2)^2+\\\\\n+a_1(a_0\\alpha^2+a_1\\alpha+a_2)+a_2-\\alpha=\\\\\n=a_0(\\alpha+2a_1\\alpha)^2+a_1(\\alpha+2a_1\\alpha)+a_2-\\alpha=\\\\\n=a_0\\alpha^2+4a_0a_1\\alpha^2+4a_0a_1^2\\alpha^2+a_1\\alpha+2a_1^2\\alpha+\\\\\n+a_2-\\alpha=\\alpha+a_1\\alpha+4a_0a_1\\alpha^2+4a_0a_1^2\\alpha^2+\\\\\n+a_1\\alpha+2a_1^2\\alpha-\\alpha=\\\\\n=4a_0a_1\\alpha^2+4a_0a_1^2\\alpha^2+\\\\\n+2a_1\\alpha+2a_1^2\\alpha=4a_0a_1\\alpha^2(1+a_1)+\\\\\n+2a_1\\alpha(1+a_1)=\\\\=2a_1\\alpha(1+a_1)(2a_0\\alpha+1)=0"
becase "a_1=-1"
"P(1)=a_0+a_1+a_2" - the sum of the coefficients of the polynomial
"a_0-a_1+a_2-1=0"
Similarly "P(P(\\beta))-\\beta=0"
or
"P(P(\\beta))-\\beta=P(-(-P(\\beta)))-\\beta=-P(\\beta)-\\beta=\\\\\n-P(-(-\\beta))-\\beta=-(-\\beta)-\\beta=\\beta-\\beta=0"
Comments
Leave a comment