Let P(x) be a quadratic polynomial such that for distinct realms α and β P(−α)=α,P(−β)=β show that alpha and beta are roots of P(P(x))−x=0
Let P(x)=a0x2+a1x+a2,a0,a1,a2∈R,a0=0
P(−α)=a0α2−a1α+a2=αa0α2+a2=α+a1α
P(P(x))−x=a0(a0x2+a1x+a2)2++a1(a0x2+a1x+a2)+a2−x
Then
P(P(α))−α=a0(a0α2+a1α+a2)2++a1(a0α2+a1α+a2)+a2−α==a0(α+2a1α)2+a1(α+2a1α)+a2−α==a0α2+4a0a1α2+4a0a12α2+a1α+2a12α++a2−α=α+a1α+4a0a1α2+4a0a12α2++a1α+2a12α−α==4a0a1α2+4a0a12α2++2a1α+2a12α=4a0a1α2(1+a1)++2a1α(1+a1)==2a1α(1+a1)(2a0α+1)=0
becase a1=−1
P(1)=a0+a1+a2 - the sum of the coefficients of the polynomial
a0−a1+a2−1=0
Similarly P(P(β))−β=0
or
P(P(β))−β=P(−(−P(β)))−β=−P(β)−β=−P(−(−β))−β=−(−β)−β=β−β=0
Comments
Leave a comment