solutions
given functions
f(x)=2x2+8x+1
g(x)=2x-k
1.) value of k for which the line y=g(x) is tangent to the curve y=f(x)
gradient function of the curve at a point is equal to the gradient of the tangent at that point.
hence:
f'( x)=4x+8
g'(x)=2
f'(x)=g'(x)
4x+8=2
x=-1.5
f(-1.5)=2(-1.5)2+8(-1.5)+1
f(-1.5)=-6.5
g(-1.5)=f(-1.5)
2(-1.5)-k=-6.5
-3-k=-6.5
dividing through by (-1) and make k the subject
k=3.5 or 7/2
2.) when k=-1 the functions become
f(x)=2x2+8x+1
g(x)=2x+1
values of x for f(x)<g(x)
2x2+8x+1<2x+1
putting like terms together implies
2x2+6x<0 implies 2x(x+3)<0
x+3<0 implies x<-3
hence at x=[-2,-1] since at x= 0 and x=-3 f(x)=g(x)
hence x=[-2,-1] f(x)<g(x)
3.) where k=-1 find g-1(f(x))
f(x)=2x2+8x+1
g(x)=2x+1
y=g(x)=2x+1
to find inverse substitute x with y and y with x then make y the subject
that is
x=2y+1
make y the subject you get y=(x-1)/2
then g-1(x)=(x-1)/2
g-1(f(x))=(2x2+8x+1-1)/2
g-1(f(x))=x2+4x
hence solving g-1(f(x))=0 we have
x2+4x=0 implies x(x+4)=0
4.) express f(x) in the form 2(x+a)2+ b
this means 2x2+8x+1=2(x+a)2+b
expanding 2(x+a)2+ b we get
2x2+8x+1=2(x2+2xa+a2)+b
open the brackets and equate the coefficients
2x2+8x+1=2x2+4xa+2a2+b
this implies 8x=4ax
1=2a2+b but a=2 then 1=2(4)+b
therefore f(x)=2(x+2)2+(-7)
Comments
Leave a comment