"(a)\\;{(1-2x)}^5=1^5+\u0421_5^1\\times(-2x)+\\\\+C_5^2\\times{(-2x)}^2+...=\\\\=1-10x+40x^2+...\\\\(b)\\;(1+ax\\;+\\;2x^2){(1-2x)}^5=\\\\\\;=(1+ax+2x^2)(1-10x+40x^2+...)\\\\It's\\;obvious\\;that\\;if\\;we\\;consider\\;the\\;rest\\;part\\;\\\\of\\;{(1-2x)}^5\\;\\;(except\\;first\\;three)\\;the\\;result\\;degree\\;\\\\of\\;x\\;will\\;be\\;greater\\;than\\;2.\\;Because\\;each\\;of\\;those\\;\\\\part\\;has\\;degree\\;at\\;least\\;of\\;3.\\\\So,\\;we\\;should\\;calculate\\;coefficient\\;of\\;x^2\\;in\\;\\;\\\\(1+ax+2x^2)(1-10x+40x^2)\\\\1\\times40+a\\times(-10)+2\\times1=40-10a+2=12\\\\10a=30\\Rightarrow a=3"
Comments
Leave a comment