Question #110552
1)find the first three term in the expansion in ascending power of x ,of (1-2x) power 5.
2)given that the coefficient of x square in the expansion of(1+ax+2x square)(1-2x)power 5 is 12, find the value of the constant a.
1
Expert's answer
2020-04-20T15:18:05-0400

Answer: (1) 1-10x+40x2 (2) a = 3

(a)  (12x)5=15+С51×(2x)++C52×(2x)2+...==110x+40x2+...(b)  (1+ax  +  2x2)(12x)5=  =(1+ax+2x2)(110x+40x2+...)Its  obvious  that  if  we  consider  the  rest  part  of  (12x)5    (except  first  three)  the  result  degree  of  x  will  be  greater  than  2.  Because  each  of  those  part  has  degree  at  least  of  3.So,  we  should  calculate  coefficient  of  x2  in    (1+ax+2x2)(110x+40x2)1×40+a×(10)+2×1=4010a+2=1210a=30a=3(a)\;{(1-2x)}^5=1^5+С_5^1\times(-2x)+\\+C_5^2\times{(-2x)}^2+...=\\=1-10x+40x^2+...\\(b)\;(1+ax\;+\;2x^2){(1-2x)}^5=\\\;=(1+ax+2x^2)(1-10x+40x^2+...)\\It's\;obvious\;that\;if\;we\;consider\;the\;rest\;part\;\\of\;{(1-2x)}^5\;\;(except\;first\;three)\;the\;result\;degree\;\\of\;x\;will\;be\;greater\;than\;2.\;Because\;each\;of\;those\;\\part\;has\;degree\;at\;least\;of\;3.\\So,\;we\;should\;calculate\;coefficient\;of\;x^2\;in\;\;\\(1+ax+2x^2)(1-10x+40x^2)\\1\times40+a\times(-10)+2\times1=40-10a+2=12\\10a=30\Rightarrow a=3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS