"A\\Delta B=(A\\backslash B)\\cup(B\\backslash A)"
I) Check whether "\\Delta" distributes over "\\cap";
II) Show that "A\\Delta \\varnothing=A, A\\Delta A=\\varnothing;"
III) Prove that "A\\Delta B=(A\\cap B')\\cup(A'\\cap B)."
Solution:
I)
"A\\Delta B" does distribute over "A\\cap B" because symmetric difference is equivalent
to the union in both relative complements. The equality in this non-strict
inclusion has occurred because there are disjoint sets. The symmetric differenc
e is thus commutative and associative.
II)
An empty set is a neutral set and
"A\\Delta \\varnothing=(A\\backslash \\varnothing)\\cup(\\varnothing\\backslash A)=\nA\\cup\\varnothing=A;"
"A\\Delta A=(A\\backslash A)\\cup(A\\backslash A)=\n\\varnothing\\cup\\varnothing=\\varnothing."
III)
"A\\Delta B=(A\\backslash B)\\cup(B\\backslash A)=(A\\cap B')\n\\cup(B\\cap A')=(A\\cap B')\\cup(A'\\cap B)"
The symmetric difference in "A\\Delta B" means that all elements belong to "A\\space or\\space B"
but not in their intersection.
Comments
Leave a comment