Question #105399
Kremer methoed se solve kre
X+2y+z=5
2X+2y+z =6
X+2y+3z=9
1
Expert's answer
2020-03-18T15:42:12-0400

{x+2y+z=52x+2y+z=6x+2y+3z=9\begin{cases} x+2y+z=5 \\ 2x+2y+z=6 \\ x+2y+3z=9 \end{cases}

Δ=121221123=212322113+2212=410+2=4\Delta=\begin{vmatrix} 1 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 2 & 3 \end{vmatrix}= \begin{vmatrix} 2 & 1\\ 2 & 3 \end{vmatrix}-2 \begin{vmatrix} 2 & 1\\ 1 & 3 \end{vmatrix}+ \begin{vmatrix} 2 & 2\\ 1 & 2 \end{vmatrix}=4-10+2=-4

Δx=521621923=5212326193+6292=20186=4\Delta_x=\begin{vmatrix} 5 & 2 & 1 \\ 6 & 2 & 1 \\ 9 & 2 & 3 \end{vmatrix}=5 \begin{vmatrix} 2 & 1\\ 2 & 3 \end{vmatrix}-2 \begin{vmatrix} 6 & 1\\ 9 & 3 \end{vmatrix}+ \begin{vmatrix} 6 & 2\\ 9 & 2 \end{vmatrix}=20-18-6=-4

Δy=151261193=619352113+2619=925+12=4\Delta_y=\begin{vmatrix} 1 & 5 & 1 \\ 2 & 6 & 1 \\ 1 & 9 & 3 \end{vmatrix}= \begin{vmatrix} 6 & 1\\ 9 & 3 \end{vmatrix}-5 \begin{vmatrix} 2 & 1\\ 1 & 3 \end{vmatrix}+ \begin{vmatrix} 2 & 6\\ 1 & 9 \end{vmatrix}=9-25+12=-4

Δz=125226129=262922619+52212=624+10=8\Delta_z=\begin{vmatrix} 1 & 2 & 5 \\ 2 & 2 & 6 \\ 1 & 2 & 9 \end{vmatrix}= \begin{vmatrix} 2 & 6\\ 2 & 9 \end{vmatrix}-2 \begin{vmatrix} 2 & 6\\ 1 & 9 \end{vmatrix}+5 \begin{vmatrix} 2 & 2\\ 1 & 2 \end{vmatrix}=6-24+10=-8

x=ΔxΔ=44=1x=\frac{\Delta_x}{\Delta}=\frac{-4}{-4}=1

y=ΔyΔ=44=1y=\frac{\Delta_y}{\Delta}=\frac{-4}{-4}=1

z=ΔzΔ=84=2z=\frac{\Delta_z}{\Delta}=\frac{-8}{-4}=2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS