Question #103133
Express sin^5x
as a linear combination of sin kx and coskx, k belongs to integers.
1
Expert's answer
2020-02-19T10:00:06-0500

We know

sin3x=3sinx4sin3xsin3x=3sinx-4sin^3x

sin3x=3sinxsin3x4\Rightarrow sin^3x=\frac{3sinx-sin3x}{4}

Also

cos2x=12sin2xcos2x=1-2sin^2x

or sin2x=1cos2x2or \space sin^2x=\frac{1-cos2x}2

We will use above two formula to write sin5xsin^5x as linear combination of sine and cosine


sin5xsin^5x

=sin2xsin3x=sin^2x\cdot sin^3x

=(1cos(2x)2)(3sin(x)sin(3x)4)=\left(\frac{1-cos(2x)}{2}\right)\left(\frac{3sin(x)-sin(3x)}{4}\right)

=18(1cos(2x))(3sin(x)sin(3x))=\frac{1}{8}\left(1-cos(2x)\right)\left(3sin(x)-sin(3x)\right)

=18(1(3sin(x)sin(3x))cos(2x)(3sin(x)sin(3x)))=\frac{1}{8}\left(1\left(3sin(x)-sin(3x)\right)-cos(2x)\left(3sin(x)-sin(3x)\right)\right) [ multiplying

=18(3sin(x)sin(3x)3cos(2x)sin(x)+sin(3x)cos(2x))=\frac{1}{8}\left(3sin(x)-sin(3x)-3cos(2x)sin(x)+sin(3x) cos(2x)\right) ...............(1)

This could be the answer but it can also further expanded as below using following formula

sin(A+B)+sin(AB)=2sinAcosBsin(A+B)+sin(A-B)=2sinAcosB

Sin(A+B)Sin(AB)=2cosAcosBSin(A+B)-Sin(A-B)=2cosAcosB

From (1)

=38sin(x)18sin(3x)38cos(2x)sin(x)=\frac{3}{8}sin(x)-\frac{1}{8}sin(3x)-\frac{3}{8}cos(2x)sin(x) +18sin(3x)cos(2x)+\frac{1}{8}sin(3x)cos(2x)

=38sin(x)18sin(3x)316(2cos(2x)sin(x))=\frac{3}{8}sin(x)-\frac{1}{8}sin(3x)-\frac{3}{16}*(2cos(2x)sin(x)) +116(2sin(3x)cos(2x))+\frac{1}{16}(2sin(3x)cos(2x))

=38sin(x)18sin(3x)316(sin(2x+x)=\frac{3}{8}sin(x)-\frac{1}{8}sin(3x)-\frac{3}{16}(sin(2x+x) sin(2xx))+116(sin(3x+2x)+sin(3x2x))-sin(2x-x))+\frac{1}{16}(sin(3x+2x)+sin(3x-2x))

=38sin(x)18sin(3x)316sin(3x)=\frac{3}{8}sin(x)-\frac{1}{8}sin(3x)-\frac{3}{16}sin(3x) +316sin(x)+116sin(5x)+116sin(x)+\frac{3}{16}sin(x)+\frac{1}{16}sin(5x)+\frac{1}{16}sin(x)

=(38+316+116)sin(x)+=(\frac{3}{8}+\frac{3}{16}+\frac{1}{16})sin(x)+ (18316)sin(3x)+116sin(5x)(-\frac{1}{8}-\frac{3}{16})sin(3x)+\frac{1}{16}sin\left(5x\right)

=58sin(x)516sin(3x)+116sin(5x)=\frac{5}{8}sin(x)-\frac{5}{16}sin(3x)+\frac{1}{16}sin(5x)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS