We know
"sin3x=3sinx-4sin^3x"
"\\Rightarrow sin^3x=\\frac{3sinx-sin3x}{4}"
Also
"cos2x=1-2sin^2x"
"or \\space sin^2x=\\frac{1-cos2x}2"
We will use above two formula to write "sin^5x" as linear combination of sine and cosine
"sin^5x"
"=sin^2x\\cdot sin^3x"
"=\\left(\\frac{1-cos(2x)}{2}\\right)\\left(\\frac{3sin(x)-sin(3x)}{4}\\right)"
"=\\frac{1}{8}\\left(1-cos(2x)\\right)\\left(3sin(x)-sin(3x)\\right)"
"=\\frac{1}{8}\\left(1\\left(3sin(x)-sin(3x)\\right)-cos(2x)\\left(3sin(x)-sin(3x)\\right)\\right)" [ multiplying
"=\\frac{1}{8}\\left(3sin(x)-sin(3x)-3cos(2x)sin(x)+sin(3x) cos(2x)\\right)" ...............(1)
This could be the answer but it can also further expanded as below using following formula
"sin(A+B)+sin(A-B)=2sinAcosB"
"Sin(A+B)-Sin(A-B)=2cosAcosB"
From (1)
"=\\frac{3}{8}sin(x)-\\frac{1}{8}sin(3x)-\\frac{3}{8}cos(2x)sin(x)" "+\\frac{1}{8}sin(3x)cos(2x)"
"=\\frac{3}{8}sin(x)-\\frac{1}{8}sin(3x)-\\frac{3}{16}*(2cos(2x)sin(x))" "+\\frac{1}{16}(2sin(3x)cos(2x))"
"=\\frac{3}{8}sin(x)-\\frac{1}{8}sin(3x)-\\frac{3}{16}(sin(2x+x)" "-sin(2x-x))+\\frac{1}{16}(sin(3x+2x)+sin(3x-2x))"
"=\\frac{3}{8}sin(x)-\\frac{1}{8}sin(3x)-\\frac{3}{16}sin(3x)" "+\\frac{3}{16}sin(x)+\\frac{1}{16}sin(5x)+\\frac{1}{16}sin(x)"
"=(\\frac{3}{8}+\\frac{3}{16}+\\frac{1}{16})sin(x)+" "(-\\frac{1}{8}-\\frac{3}{16})sin(3x)+\\frac{1}{16}sin\\left(5x\\right)"
"=\\frac{5}{8}sin(x)-\\frac{5}{16}sin(3x)+\\frac{1}{16}sin(5x)"
Comments
Leave a comment