I think there are some mistakes in the task.
For example, if "x=y=z=2":
"((x+y+z)\/3)^{x+y+z}=2^6\\geq 3\\times 2^2=x^x+y^y+z^z\\geq(x^2+y^2+z^2)\/(x+y+z)=2."
But there should be another inequality signs.
To my mind, the correct task is as follows.
Prove for natural numbers x, y, z:
"\\left( \\frac{x+y+z}{3} \\right)^{x+y+z}\\leq x^x y^y z^z \\leq \\left( \\frac{x^2+y^2+z^2}{x+y+z} \\right)^{x+y+z}"
Proof:
1) Using inequality between arithmetic and geometric means for "a_1=x,...,a_ x=x, a_{x+1}=y,...,a_{x+y}=y,a_{x+y+1}=z,...,a_{x+y+z}=z,"
we have:
"x^x y^yz^z=a_1a_2...a_{x+y+z} \\leq \\left( \\frac{a_1+a_2+...+a_{x+y+z}}{x+y+z} \\right)^{x+y+z}= \\left( \\frac{x^2+y^2+z^2}{x+y+z} \\right)^{x+y+z}"
2) Using inequality between arithmetic and geometric means for
"a_1=1\/x,...,a_ x=1\/x, a_{x+1}=1\/y,...,a_{x+y}=1\/y,a_{x+y+1}=1\/z,...,a_{x+y+z}=1\/z,"
we have:
"\\left( \\frac{3}{x+y+z} \\right)^{x+y+z}= \\left( \\frac{\\frac{1}{x}+...+\\frac{1}{x}+\\frac{1}{y}+...+\\frac{1}{y}+\\frac{1}{z}+...+\\frac{1}{z}}{x+y+z} \\right)^{x+y+z}\\geq \\left( \\frac{1}{x} \\right)^{x} \\left( \\frac{1}{y} \\right)^{y} \\left( \\frac{1}{z} \\right)^{z}"
"\\left( \\frac{3}{x+y+z} \\right)^{x+y+z}\\geq \\left( \\frac{1}{x} \\right)^{x} \\left( \\frac{1}{y} \\right)^{y} \\left( \\frac{1}{z} \\right)^{z} \\Rightarrow x^xy^yz^z\\geq \\left( \\frac{x+y+z}{3} \\right)^{x+y+z}"
Comments
Leave a comment