Question #103131
Prove that
((x+y+z)/3)^x+y+z ≤ x^x + y^y + z^z ≤ ((x^2 + y^2 + z^2)/(x+y+z) ,
where x, y, z belongs to natural numbers.
1
Expert's answer
2020-02-18T07:57:00-0500

I think there are some mistakes in the task.

For example, if x=y=z=2x=y=z=2:

((x+y+z)/3)x+y+z=263×22=xx+yy+zz(x2+y2+z2)/(x+y+z)=2.((x+y+z)/3)^{x+y+z}=2^6\geq 3\times 2^2=x^x+y^y+z^z\geq(x^2+y^2+z^2)/(x+y+z)=2.

But there should be another inequality signs.


To my mind, the correct task is as follows.

Prove for natural numbers x, y, z:

(x+y+z3)x+y+zxxyyzz(x2+y2+z2x+y+z)x+y+z\left( \frac{x+y+z}{3} \right)^{x+y+z}\leq x^x y^y z^z \leq \left( \frac{x^2+y^2+z^2}{x+y+z} \right)^{x+y+z}

Proof:

1) Using inequality between arithmetic and geometric means for a1=x,...,ax=x,ax+1=y,...,ax+y=y,ax+y+1=z,...,ax+y+z=z,a_1=x,...,a_ x=x, a_{x+1}=y,...,a_{x+y}=y,a_{x+y+1}=z,...,a_{x+y+z}=z,

we have:

xxyyzz=a1a2...ax+y+z(a1+a2+...+ax+y+zx+y+z)x+y+z=(x2+y2+z2x+y+z)x+y+zx^x y^yz^z=a_1a_2...a_{x+y+z} \leq \left( \frac{a_1+a_2+...+a_{x+y+z}}{x+y+z} \right)^{x+y+z}= \left( \frac{x^2+y^2+z^2}{x+y+z} \right)^{x+y+z}

2) Using inequality between arithmetic and geometric means for

a1=1/x,...,ax=1/x,ax+1=1/y,...,ax+y=1/y,ax+y+1=1/z,...,ax+y+z=1/z,a_1=1/x,...,a_ x=1/x, a_{x+1}=1/y,...,a_{x+y}=1/y,a_{x+y+1}=1/z,...,a_{x+y+z}=1/z,

we have:

(3x+y+z)x+y+z=(1x+...+1x+1y+...+1y+1z+...+1zx+y+z)x+y+z(1x)x(1y)y(1z)z\left( \frac{3}{x+y+z} \right)^{x+y+z}= \left( \frac{\frac{1}{x}+...+\frac{1}{x}+\frac{1}{y}+...+\frac{1}{y}+\frac{1}{z}+...+\frac{1}{z}}{x+y+z} \right)^{x+y+z}\geq \left( \frac{1}{x} \right)^{x} \left( \frac{1}{y} \right)^{y} \left( \frac{1}{z} \right)^{z}

(3x+y+z)x+y+z(1x)x(1y)y(1z)zxxyyzz(x+y+z3)x+y+z\left( \frac{3}{x+y+z} \right)^{x+y+z}\geq \left( \frac{1}{x} \right)^{x} \left( \frac{1}{y} \right)^{y} \left( \frac{1}{z} \right)^{z} \Rightarrow x^xy^yz^z\geq \left( \frac{x+y+z}{3} \right)^{x+y+z}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS