Answer to Question #100458 in Algebra for Rahul Bisht

Question #100458
find all the 5th roots of 5-i
1
Expert's answer
2019-12-17T05:08:43-0500

What is actually asked here is to solve the equation


z5=5i.z^5=5-i.

In other words, the modulus here is


m=52+(1)2=26,m=\sqrt{5^2+(-1)^2}=\sqrt{26},

and the argument is


ϕ=atan15=0.197 rad.\phi=\text{atan}\frac{-1}{5}=-0.197\text{ rad}.

Therefore, we can rewrite the equation into the following polar form:


z5=26e0.197i+2kπi.z^5=\sqrt{26}\cdot e^{-0.197i+2k\pi i}.

Simplify:

z5=26e(0.197+2kπ)i.z^5=\sqrt{26}\cdot e^{(-0.197+2k\pi)i}.

Let


z=reiθ.z=re^{i\theta}.

Hence:


(reiθ)5=26e(0.197+2kπ)i, r5e5iθ=26e(0.197+2kπ)i,\big(re^{i\theta}\big)^5=\sqrt{26}\cdot e^{(-0.197+2k\pi)i},\\ \space\\ r^5e^{5i\theta}=\sqrt{26}\cdot e^{(-0.197+2k\pi)i},

equate the modulus and the power of ee:


r5=26,       5θ=0.197+2kπ; r=2610,       θ=2kπ0.1975.r^5=\sqrt{26},\space\space\space\space\space\space\space5\theta=-0.197+2k\pi;\\ \space\\ r=\sqrt[10]{26},\space\space\space\space\space\space\space\theta=\frac{2k\pi-0.197}{5}.\\

Now the question is: what values of kk must we choose in order to get five different and unique roots? The answer is the values starting from zero to n1n-1, that is,


k=0,1,2,3,4.k=0,1,2,3,4.

Substitute these values and get 5 roots:


z1=2610e0.1975,z2=2610e2π0.1975,z3=2610e4π0.1975,z4=2610e6π0.1975,z5=2610e8π0.1975.z_1=\sqrt[10]{26}\cdot e^\frac{-0.197}{5},\\ z_2=\sqrt[10]{26}\cdot e^\frac{2\pi-0.197}{5},\\ z_3=\sqrt[10]{26}\cdot e^\frac{4\pi-0.197}{5},\\ z_4=\sqrt[10]{26}\cdot e^\frac{6\pi-0.197}{5},\\ z_5=\sqrt[10]{26}\cdot e^\frac{8\pi-0.197}{5}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment