Let us call a ring A a matrix ring if A ∼ Mm(R) for some integer m ≥ 2and some ring R. True or False: “A homomorphic image of a matrix ring is also a matrix ring”?
R be a simple ring that is finite-dimensional over its center k, show that R is isomorphic to a matrix
algebra over its center k iff R has a nonzero left ideal A with (dimkA)2 ≤ dimkR
Let R be a simple ring that is finite-dimensional over its center k. Let M be a finitely generated left R-module and let E = End(RM). Show that (dimkM)2 = (dimkR)(dimkE).
Show that, if M is a simple module over a ring R, then as an abelian group, M is isomorphic to a direct sum of copies of Q, or a direct sum of copies of Zp for some prime p.
Let V be a left R-module with elements e1, e2, . . . such that, for any n, there exists r ∈ R such ren, ren+1, . . . are almost all 0, but not all 0. Show that P := V × V ו • • is not a semisimple R-module.
Let V be a left R-module with elements e1, e2, . . . such that, for any n, there exists r ∈ R such ren, ren+1, . . . are almost all 0, but not all 0. Show that S := V ⊕ V ⊕• • • is not a direct summand of P := V × V ו • •
Finding a professional expert in "partial differential equations" in the advanced level is difficult.
You can find this expert in "Assignmentexpert.com" with confidence.
Exceptional experts! I appreciate your help. God bless you!