By definition, the inverse element is
"p*p^{-1}=p^{-1}*p=e" where "e" is an identity element.
For the convenience of the solution, we will denote "p^{-1}\\equiv q" .
Then,
"p*q=p^2-q^2-2pq=e" We will consider this as an equation for a variable "q" .
"q^2+2pq+(e-p^2)=0\\\\\nD=(2p)^2-4\\cdot(e-p^2)=4p^2+4p^2-4e=8p^2-4e\\\\\nq_1=\\frac{-2p+\\sqrt{8p^2-4e}}{2}=-p+\\sqrt{2p^2-e}\\\\\nq_2=\\frac{-2p-\\sqrt{8p^2-4e}}{2}=-p-\\sqrt{2p^2-e}" Check result
"p*q_1=p^2-q_1^2-2pq_1=\\\\\n=p^2-\\left(\\sqrt{2p^2-e}-p\\right)^2-2p\\left(\\sqrt{2p^2-e}-p\\right)=\\\\\n=p^2-\\left(2p^2-e-2p\\sqrt{2p^2-e}+p^2\\right)+2p^2-2p\\sqrt{2p^2-e}=\\\\\n=p^2-3p^2+e+2p\\sqrt{2p^2-e}+2p^2-2p\\sqrt{2p^2-e}=e" Conclusion,
"\\boxed{p\\longrightarrow p^{-1}=\\sqrt{2p^2-e}-p}" ANSWER
"p\\longrightarrow p^{-1}=\\sqrt{2p^2-e}-p"
Comments
Leave a comment