Question #92042
State and prove generalized commutative law in a commutative semigroup
1
Expert's answer
2019-07-29T09:27:34-0400

Generalized commutative law (GCL) :

let {i1, i2, ..., in} be the permutation of {1, 2, .., n}, then for elements a1, a2, ... an of the semigroup we have


a1a2...an=ai1ai2...ain.a_1*a_2*...*a_n=a_{i_1}*a_{i_2}*...*a_{i_n}.

Proof (using extended mathematical induction):

1) For n = 1 we have a1 = a1, for n = 2 a1*a2 = a2*a1 therefor GCL holds for n = 1 and n = 2.

2)Assume that GCL is true for all n < k + 1.

3)Prove that GCL is true for n = k + 1, that is


a1a2...ak+1=ai1ai2...aik+1.a_1*a_2*...*a_{k+1}=a_{i_1}*a_{i_2}*...*a_{i_{k+1}}.

Let


aim=ak+1a_{i_m}=a_{k+1}

then using generalized associative property of the semigroup


ai1ai2...aim1aimaim+1...aik+1=a_{i_1}*a_{i_2}*...*a_{i_{m-1}}*a_{i_{m}}*a_{i_{m+1}}*...*a_{i_{k+1}}=

(ai1ai2...aim1)(aim(aim+1...aik+1))(a_{i_1}*a_{i_2}*...*a_{i_{m-1}})*(a_{i_{m}}*(a_{i_{m+1}}*...*a_{i_{k+1}}))


using 2)

(ai1ai2...aim1)(aim(aim+1...aik+1))=(a_{i_1}*a_{i_2}*...*a_{i_{m-1}})*(a_{i_{m}}*(a_{i_{m+1}}*...*a_{i_{k+1}}))=


(ai1ai2...aim1)((aim+1...aik+1)aim)(a_{i_1}*a_{i_2}*...*a_{i_{m-1}})*((a_{i_{m+1}}*...*a_{i_{k+1}})*a_{i_{m}})

using generalized associative property again


(ai1ai2...aim1)((aim+1...aik+1)aim)=(a_{i_1}*a_{i_2}*...*a_{i_{m-1}})*((a_{i_{m+1}}*...*a_{i_{k+1}})*a_{i_{m}})=

(ai1ai2...aim1aim+1...aik+1)aim(a_{i_1}*a_{i_2}*...*a_{i_{m-1}}*a_{i_{m+1}}*...*a_{i_{k+1}})*a_{i_{m}}

(i1, i2,..., im-1, im+1,...,ik+1 is a permutation of 1, 2 , ..., k) using 2) for n = k


(ai1ai2...aim1aim+1...aik+1)=(a_{i_1}*a_{i_2}*...*a_{i_{m-1}}*a_{i_{m+1}}*...*a_{i_{k+1}})=

a1a2...aka_1*a_2*...*a_k

therefor


(ai1ai2...aim1aim+1...aik+1)aim=(a_{i_1}*a_{i_2}*...*a_{i_{m-1}}*a_{i_{m+1}}*...*a_{i_{k+1}})*a_{i_{m}}=

a1a2...akaim=a1a2...akak+1a_1*a_2*...*a_k*a_{i_m}=a_1*a_2*...*a_k*a_{k+1}

and


ai1ai2...aik+1=a_{i_1}*a_{i_2}*...*a_{i_{k+1}}=

ai1ai2...aim1aimaim+1...aik+1=a_{i_1}*a_{i_2}*...*a_{i_{m-1}}*a_{i_{m}}*a_{i_{m+1}}*...*a_{i_{k+1}}=

a1a2...akak+1a_1*a_2*...*a_k*a_{k+1}

So we have proved GCL using extended mathematical induction.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS