Generalized commutative law (GCL)Â :
let {i1, i2, ..., in} be the permutation of {1, 2, .., n}, then for elements a1, a2, ... an of the semigroup we have
Proof (using extended mathematical induction):
1) For n = 1 we have a1 = a1, for n = 2 a1*a2 = a2*a1 therefor GCL holds for n = 1 and n = 2.
2)Assume that GCL is true for all n < k + 1.
3)Prove that GCL is true for n = k + 1, that is
Let
then using generalized associative property of the semigroup
"(a_{i_1}*a_{i_2}*...*a_{i_{m-1}})*(a_{i_{m}}*(a_{i_{m+1}}*...*a_{i_{k+1}}))"
using 2)
"(a_{i_1}*a_{i_2}*...*a_{i_{m-1}})*(a_{i_{m}}*(a_{i_{m+1}}*...*a_{i_{k+1}}))=""(a_{i_1}*a_{i_2}*...*a_{i_{m-1}})*((a_{i_{m+1}}*...*a_{i_{k+1}})*a_{i_{m}})"
using generalized associative property again
"(a_{i_1}*a_{i_2}*...*a_{i_{m-1}}*a_{i_{m+1}}*...*a_{i_{k+1}})*a_{i_{m}}"
(i1, i2,..., im-1, im+1,...,ik+1 is a permutation of 1, 2 , ..., k) using 2) for n = k
"a_1*a_2*...*a_k"
therefor
"a_1*a_2*...*a_k*a_{i_m}=a_1*a_2*...*a_k*a_{k+1}"
and
"a_{i_1}*a_{i_2}*...*a_{i_{m-1}}*a_{i_{m}}*a_{i_{m+1}}*...*a_{i_{k+1}}="
"a_1*a_2*...*a_k*a_{k+1}"
So we have proved GCL using extended mathematical induction.
Comments
Leave a comment