Generalized commutative law (GCL) :
let {i1, i2, ..., in} be the permutation of  {1, 2, .., n}, then for  elements a1, a2, ... an of the semigroup we have 
a1∗a2∗...∗an=ai1∗ai2∗...∗ain. Proof (using extended mathematical induction):
1) For n = 1  we have a1 = a1, for n = 2 a1*a2 = a2*a1 therefor GCL holds for n = 1 and n = 2.
2)Assume that GCL is true for all  n < k + 1.
3)Prove that GCL is true for n = k + 1, that is
a1∗a2∗...∗ak+1=ai1∗ai2∗...∗aik+1. Let 
aim=ak+1then using generalized associative property of the semigroup 
ai1∗ai2∗...∗aim−1∗aim∗aim+1∗...∗aik+1= 
(ai1∗ai2∗...∗aim−1)∗(aim∗(aim+1∗...∗aik+1))
using 2) 
(ai1∗ai2∗...∗aim−1)∗(aim∗(aim+1∗...∗aik+1))=
                                                       
(ai1∗ai2∗...∗aim−1)∗((aim+1∗...∗aik+1)∗aim) using generalized associative property again 
(ai1∗ai2∗...∗aim−1)∗((aim+1∗...∗aik+1)∗aim)= 
(ai1∗ai2∗...∗aim−1∗aim+1∗...∗aik+1)∗aim(i1, i2,..., im-1, im+1,...,ik+1 is a permutation of 1, 2 , ..., k) using 2) for n = k
(ai1∗ai2∗...∗aim−1∗aim+1∗...∗aik+1)= 
a1∗a2∗...∗ak therefor 
(ai1∗ai2∗...∗aim−1∗aim+1∗...∗aik+1)∗aim= 
a1∗a2∗...∗ak∗aim=a1∗a2∗...∗ak∗ak+1 and 
ai1∗ai2∗...∗aik+1= 
ai1∗ai2∗...∗aim−1∗aim∗aim+1∗...∗aik+1= 
a1∗a2∗...∗ak∗ak+1 So we have proved GCL using extended mathematical induction.
Comments