Let A = {1,2,3,4,5,6} and let p1 = (3,6,2) and p2 = (5, 1, 4) be permutations of A.
(a) Compute p1 ◦ p2 and write the result as a product of cycles and as the product of transpositions.
(b) Compute p−1 ◦ p−1.
"p_1=(362), p_2=(514)\\\\\np_1 \\circ p_2 =(362) \\circ (514)=\\begin{pmatrix}\n 1 & 2&3&4&5&6 \\\\\n 4 & 3 &6&5&1&2\n\\end{pmatrix}=(145)(236)"
b.)
"p_1^{-1}=(362)^{-1}=(263)\\\\\np_2^{-1}=(514)^{-1}=(154)\\\\\np_1^{-1} \\circ p_2^{-1}=(263)\\circ(154)=\\begin{pmatrix}\n 1&2&3&4&5&6 \\\\\n 5&6&2&1&4&3\n\\end{pmatrix}=(154)(263)"
Comments
Leave a comment