Question #278805

x*y=x2+2x+y2; x⊕y=x+y


1
Expert's answer
2021-12-13T15:07:29-0500

Let the operations * and ⊕ be defined on the set of integers.

The operation * on Z\Z is associative, if for every a,b,c,Z,a, b, c, ∈ \Z, we have

(ab)c=a(bc).(a ^* b) ^* c = a^* (b^*c).

We have


(ab)c=(a2+2a+b2)c(a ^* b) ^* c=(a^2+2a+b^2) ^* c

=(a2+2a+b2)2+2(a2+2a+b2)+c2=(a^2+2a+b^2)^2+2(a^2+2a+b^2)+c^2

a(bc)=a(b2+2b+c2)a^* (b^*c)= a^* (b^2+2b+c^2)

=a2+2a+(b2+2b+c2)2=a^2+2a+(b^2+2b+c^2)^2

Let a=b=0,c=2.a=b=0, c=2. Then


(ab)c=(00)2=(a ^* b) ^* c=(0 ^* 0) ^* 2=

=(0+0+0)2+2(0+0+0)+22=4=(0+0+0)^2+2(0+0+0)+2^2 =4

a(bc)=0(02)a^* (b^*c)= 0^* (0^*2)

=0+0+(0+0+22)2=16=0+0+(0+0+2^2)^2=16


Since 416,4\not=16, then (ab)ca(bc).(a ^* b) ^* c \not= a^* (b^*c).

The operation ^* is not associative.


The operation ^* on Z\Z is commutative, if for every a,b,Z,a, b, ∈ \Z, we have

ab=baa ^* b = b^* a

We have


ab=a2+2a+b2a ^* b =a^2+2a+b^2

ba=b2+2b+a2b ^* a =b^2+2b+a^2

Suppose ab=ba,a,bZ.a ^* b = b^* a, a, b \in \Z. Then


a2+2a+b2=b2+2b+a2=>a=ba^2+2a+b^2=b^2+2b+a^2=>a=b

Hence the statement ab=baa ^* b = b^* a is False for ab,a,bZ.a\not=b, a, b \in \Z.

The operation ^* is not commutative.


The operation ^* on Z\Z is left-distributive over , if for every a,b,cZ,a, b, c∈ \Z, we have a(bc)=(ab)(ac)a ^*( b⊕c) =(a^*b)⊕(a^*c)

We have


a(bc)=a2+2a+(b+c)2a ^*( b⊕c)=a^2+2a+(b+c)^2

(ab)(ac)=a2+2a+b2+a2+2a+c2(a^*b)⊕(a^*c) =a^2+2a+b^2+a^2+2a+c^2

Let a=1,b=c=0.a=1, b=c=0. Then


a(bc)=1(00)=12+2(1)+(0+0)2=3a ^*( b⊕c)=1 ^*( 0⊕0)=1^2+2(1)+(0+0)^2=3

(ab)(ac)=(10)(10)(a^*b)⊕(a^*c)=(1^*0)⊕(1^*0 )

=12+2(1)+0+12+2(1)+0=6=1^2+2(1)+0+1^2+2(1)+0=6

Since 36,3\not=6, the operation ^* is not left-distributive over .⊕.


The operation ^* on Z\Z is right-distributive over , if for every a,b,cZ,a, b, c∈ \Z, we have (bc)a=(ba)(ca)( b⊕c)^*a =(b^*a)⊕(c^*a)

We have


(bc)a=(b+c)2+2(b+c)+a2( b⊕c)^*a =(b+c)^2+2(b+c)+a^2

(ba)(ca)=b2+2b+a2+c2+2c+a2(b^*a)⊕(c^*a) =b^2+2b+a^2+c^2+2c+a^2

Let a=1,b=c=0.a=1, b=c=0. Then


(bc)a=(00)1( b⊕c)^*a =( 0⊕0)^*1

=(0+0)2+2(0+0)+12=1=(0+0)^2+2(0+0)+1^2=1

(ba)(ca)=(01)(01)(b^*a)⊕(c^*a )=(0^*1)⊕(0^*1)

=02+2(0)+12+02+2(0)+12=2=0^2+2(0)+1^2+0^2+2(0)+1^2=2

Since 12,1\not=2, the operation ^* is not right-distributive over .⊕.


The operation on Z\Z is associative, if for every a,b,c,Z,a, b, c, ∈ \Z, we have

(ab)c=a(bc).(a ⊕ b) ⊕ c = a⊕(b⊕c).

We have


(ab)c=(a+b)c=a+b+c(a⊕ b) ⊕c=(a+b) ⊕c=a+b+c

a(bc)=a(b+c)=a+b+ca⊕(b⊕c)=a⊕(b+c)=a+b+c

Then (ab)c=a+b+c=a(bc),a,b,cZ.(a ⊕ b) ⊕ c =a+b+c= a⊕(b⊕c), a,b,c\in\Z.

The operation is associative.


The operation on Z\Z is commutative, if for every a,b,Z,a, b, ∈ \Z, we have

ab=baa⊕ b = b⊕ a

We have


ab=a+ba ⊕b =a+b

ba=b+a=a+bb⊕a =b+a=a+b

Then ab=a+b=b+a=ba,a,bZ.a ⊕ b =a+b=b+a= b⊕a, a,b\in\Z.

The operation is commutative.


The operation on Z\Z is left-distributive over ^* , if for every a,b,cZ,a, b, c∈ \Z, we have a(bc)=(ab)(ac).a ⊕( b^*c) =(a⊕b)^*(a⊕c).

We have


a(bc)=a+b2+2b+c2a ⊕( b^*c)=a+b^2+2b+c^2

(ab)(ac)=(a+b)2+2(a+b)+(a+c)2(a⊕b)^*(a⊕c)=(a+b)^2+2(a+b)+(a+c)^2

Let a=1,b=c=0.a=1, b=c=0. Then


a(bc)=1(00)=1+02+2(0)+02=1a ⊕( b^*c)=1 ⊕( 0^*0)=1+0^2+2(0)+0^2=1

(ab)(ac)=(10)(10)(a⊕b)^*(a⊕c)=(1⊕0)^*(1⊕0)

=(1+0)2+2(1+0)+(1+0)2=4=(1+0)^2+2(1+0)+(1+0)^2=4

Since 14,1\not=4, the operation is not left-distributive over .^*.


The operation on Z\Z isright-distributive over ^* , if for every a,b,cZ,a, b, c∈ \Z, we have (bc)a=(ba)(ca).( b^*c) ⊕a=(b⊕a)^*(c⊕a).

We have


(bc)a=b2+2b+c2+a( b^*c) ⊕a=b^2+2b+c^2+a

(ba)(ca)=(b+a)2+2(b+a)+(c+a)2(b⊕a)^*(c⊕a)=(b+a)^2+2(b+a)+(c+a)^2

Let a=1,b=c=0.a=1, b=c=0. Then


(bc)a=(00)1=02+2(0)+02+1=1( b^*c) ⊕a=( 0^*0) ⊕1=0^2+2(0)+0^2+1=1

(ba)(ca)=(01)(01)(b⊕a)^*(c⊕a)=(0⊕1)^*(0⊕1)

=(0+1)2+2(1+0)+(0+1)2=4=(0+1)^2+2(1+0)+(0+1)^2=4

Since 14,1\not=4, the operation is not right-distributive over .^*.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS