Let G be a nonabelian group of order 10 having golden ratio 1+√
5
2
as the neutral
element. Then:
(a) Verify class equation for G.
(b) Find all elements of Inn(G).
(c) Verify that G/Z(G) ∼= Inn(G).
(d) For some elements x, y, z ∈ G: verify the commutator identity: [xy, z] = [x, z][x, z, y][y, z]
Part a.
Since the order of G is 10, so the golden ratio divides the order of G.
So, the class equation for G is
where n = 1,...,10
Part b
In this part of the question, we will employ the general class equation for G.This will help us get the Inn(G) elements (First four elements).
The Inn(G) elements are given below
[1+ \frac{\sqrt{5}}{2}]^n\\ [1+ \frac{\sqrt{5}}{2}]^0= [1]\\ [1+ \frac{\sqrt{5}}{2}]^1= [1+ \frac{\sqrt{5}}{2}]\\ [1+ \frac{\sqrt{5}}{2}]^2=[1+ \frac{\sqrt{5}}{2}]^2\\ [1+ \frac{\sqrt{5}}{2}]^3=[1+ \frac{\sqrt{5}}{2}]^3\\
Part c
and
Part d
From the question we are asked to verify the commutator identity.
LHS\\ [xy,z]=xyz-zxy\\ RHS\\ [x, z][x, z, y][y, z] = x[y,z]+[x,z]y\\ \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space = x[yz-zy]+[xz-zx]y\\ \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space = xyz-xzy+xzy-zxy\\ \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space = xyz-zxy\\
The LHS and the RHS are equal. Hence the commutator is identical.
Comments