Give an example of infinite ring of characteristic 2
Consider the infinite ring "(\\mathbb Z_2,+,\\cdot)^{\\omega}=\\{(a_0,a_1,a_2,...,a_n,...)|\\ a_i\\in\\Z_2\\}," where "\\Z_2=\\{0,1\\}."
Taking into account that
"2\\cdot(a_0,a_1,a_2,...,a_n,...)=(2a_0,2a_1,2a_2,...,2a_n,...)=(0,0,0,...,0,...)"
for any "(a_0,a_1,a_2,...,a_n,...)\\in(\\mathbb Z_2)^{\\omega}",
we conclude that this ring is of characteristic 2.
Comments
Leave a comment