Question #218542

Give an example of infinite ring of characteristic 2


1
Expert's answer
2022-01-31T15:49:44-0500

Consider the infinite ring (Z2,+,)ω={(a0,a1,a2,...,an,...) aiZ2},(\mathbb Z_2,+,\cdot)^{\omega}=\{(a_0,a_1,a_2,...,a_n,...)|\ a_i\in\Z_2\}, where Z2={0,1}.\Z_2=\{0,1\}.

Taking into account that

2(a0,a1,a2,...,an,...)=(2a0,2a1,2a2,...,2an,...)=(0,0,0,...,0,...)2\cdot(a_0,a_1,a_2,...,a_n,...)=(2a_0,2a_1,2a_2,...,2a_n,...)=(0,0,0,...,0,...)

for any (a0,a1,a2,...,an,...)(Z2)ω(a_0,a_1,a_2,...,a_n,...)\in(\mathbb Z_2)^{\omega},

we conclude that this ring is of characteristic 2.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS