what is the order of
i) 14 in Z24/ _
<8>?
ii) (Z10⊕U(10)/<2,9>?
i)
(8) has order 3 in Z24 , so Z24/(8) is cyclic of order 8, generated by [14] +(8).
Now (8) = {[0], [8], [16]} ⊂ Z24
[14] +(8)"\\ne" (8) (since 14 "\\notin" (8))
([14] + (8))2 = [28] +(8)=[4] +(8) "\\ne" (8)
([14] + (8))3 = [42] +(8)=[18] +(8) "\\ne" (8)
([14] + (8))4 = [56] +(8)=[8] +(8) "=" (8)
([14] + (8))5 = [70] +(8)=[22] +(8) "\\ne" (8)
([14] + (8))6 = [84] +(8)=[12] +(8) "\\ne" (8)
([14] + (8))7 = [98] +(8)=[2] +(8) "\\ne" (8)
([14] + (8))8 = [112] +(8)=[16] +(8) "=" (8)
Therefore, [14] + (8) has order 6 in Z24/(8)
ii)
"\\Z^{\\times}_{10}=\\{1,3,7,9\\}"
"\\Z_{10}=\\{0,1,2,3,4,5,6,7,8,9\\}"
"<2,9> = (2,9),(4,1),(6,9),(8,1),(0,9),(2,1),(4,9),(6,1),(8,0),(0,1)"
The order of quotient group "\\Z_{10}\\times\\Z_{10}^{\\times}\/<2,9>" :
"\\frac{|\\Z_{10}\\times\\Z_{10}^{\\times}|}{|<2,9>|}=\\frac{10}{10}=1"
Comments
Leave a comment