Obtain the left cosets of V4= {e, (1 2) (3 4), (1 3) (2 4), (1 4) (2 3)}in A4.
There are "|A_4\/V_4|=\\frac{|A_4|}{|V_4|}=\\frac{12}{4}=3" different left cosets of the Klein four-subgroup "V_4= \\{e, (1 2) (3 4), (1 3) (2 4), (1 4) (2 3)\\}" in the alternating group "A_4." Let us find them:
"eV_4=V_4=\\{e, (1 2) (3 4), (1 3) (2 4), (1 4) (2 3)\\},"
"(123)V_4=(123)\\{e, (1 2) (3 4), (1 3) (2 4), (1 4) (2 3)\\}=\\{(123),(134),(243),(142)\\}," and
"(132)V_4=(132)\\{e, (1 2) (3 4), (1 3) (2 4), (1 4) (2 3)\\}=\\{(132),(234),(124),(143)\\}."
Comments
Leave a comment