Question #203310

Obtain the left cosets of V4= {e, (1 2) (3 4), (1 3) (2 4), (1 4) (2 3)}in A4.


1
Expert's answer
2021-06-14T11:09:20-0400

There are A4/V4=A4V4=124=3|A_4/V_4|=\frac{|A_4|}{|V_4|}=\frac{12}{4}=3 different left cosets of the Klein four-subgroup V4={e,(12)(34),(13)(24),(14)(23)}V_4= \{e, (1 2) (3 4), (1 3) (2 4), (1 4) (2 3)\} in the alternating group A4.A_4. Let us find them:


eV4=V4={e,(12)(34),(13)(24),(14)(23)},eV_4=V_4=\{e, (1 2) (3 4), (1 3) (2 4), (1 4) (2 3)\},

(123)V4=(123){e,(12)(34),(13)(24),(14)(23)}={(123),(134),(243),(142)},(123)V_4=(123)\{e, (1 2) (3 4), (1 3) (2 4), (1 4) (2 3)\}=\{(123),(134),(243),(142)\}, and

(132)V4=(132){e,(12)(34),(13)(24),(14)(23)}={(132),(234),(124),(143)}.(132)V_4=(132)\{e, (1 2) (3 4), (1 3) (2 4), (1 4) (2 3)\}=\{(132),(234),(124),(143)\}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS