Answer to Question #203298 in Abstract Algebra for Raghav

Question #203298

Let G be a finite group. Show that the number of elements g of G such that g3= e is

odd, where e is the identity of G.


1
Expert's answer
2021-06-10T06:59:52-0400

Let GG be a finite group. Let us show that the number of elements gGg\in G such that g3=eg^3= e is

odd, where ee is the identity of GG. If g3=eg^3=e, then (g1)3=g3=(g3)1=e1=e(g^{-1})^3=g^{-3}=(g^3)^{-1}=e^{-1}=e. Let us find all gGg\in G such that g3=eg^3=e and g1=g.g^{-1}=g. In this case g2=e,g^2=e, and hence g=ge=gg2=g3=e.g=ge=gg^2=g^3=e.  Therefore, for all non-identity elements gg with g3=eg^3=e we have that (g1)3=e(g^{-1})^3=e and the set {g,g1}\{g,g^{-1}\} is of cardinality 2. Since e3=ee^3=e and {g,g1}=2|\{g,g^{-1}\}|=2 for gG{e}g\in G\setminus\{e\} and g3=eg^3=e, we conclude that the number of elements gGg\in G such that g3=eg^3= e is equal to  {e}(gG{e}, g3=e{g,g1})=1+2k|\{e\}\cup(\bigcup\limits_{g\in G\setminus\{e\},\ g^3=e}\{g,g^{-1}\})|=1+2k (where kk is a number of different pairs {g,g1}\{g,g^{-1}\}), and hence is odd.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment