Question #179443

Find all left cosets of the subgroup {ρ02} = {e,(1,3)(2,4)} in D4



1
Expert's answer
2021-04-15T07:25:19-0400

Remind that D4={ρ0=e,ρ1=(1 2 3 4),ρ2=ρ12,ρ3=ρ13,σ=(1 3),σρ1,σρ12,σρ13}D_4=\{\rho_0=e,\rho_1=(1\ 2\ 3\ 4), \rho_2=\rho_1^2, \rho_3=\rho_1^3, \sigma=(1\ 3), \sigma\rho_1, \sigma\rho_1^2, \sigma\rho_1^3\} , σ2=ρ14=(σρ1)2=e\sigma^2=\rho_1^4=(\sigma\rho_1)^2=e. Given an element gD4g\in D_4, the left coset in D4D_4, generated by the element g and the subgroup H={e,ρ12}H=\{e,\rho_1^2\}, is the set {gh:hH}\{gh:h\in H\} . Two left cosets gH and g'H are the same, if and only if ggHg'\in gH , if and only if g1gHg^{-1}g'\in H . Let calculate.

eH=H={e,ρ12}=ρ12HeH=H=\{e,\rho_1^2\}=\rho_1^2H

ρ1H={ρ1,ρ13}=ρ13H\rho_1 H=\{\rho_1,\rho_1^3\}=\rho_1^3H

σH={σ,σρ12}=σρ12H\sigma H=\{\sigma, \sigma\rho_1^2\}=\sigma\rho_1^2H

σρ1H={σρ1,σρ13}=σρ13H\sigma\rho_1 H=\{\sigma\rho_1, \sigma\rho_1^3\}=\sigma\rho_1^3H

The number of different left cosets is 4. This is an index of the subgroup H in D4D_4 .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS