Remind that D4={ρ0=e,ρ1=(1 2 3 4),ρ2=ρ12,ρ3=ρ13,σ=(1 3),σρ1,σρ12,σρ13} , σ2=ρ14=(σρ1)2=e. Given an element g∈D4, the left coset in D4, generated by the element g and the subgroup H={e,ρ12}, is the set {gh:h∈H} . Two left cosets gH and g'H are the same, if and only if g′∈gH , if and only if g−1g′∈H . Let calculate.
eH=H={e,ρ12}=ρ12H
ρ1H={ρ1,ρ13}=ρ13H
σH={σ,σρ12}=σρ12H
σρ1H={σρ1,σρ13}=σρ13H
The number of different left cosets is 4. This is an index of the subgroup H in D4 .
Comments