"G=\\{A=\\begin{pmatrix}\n a_{11} & a_{12}&a_{13} \\\\\n a_{21} & a_{22}&a_{23} \\\\\n a_{31} & a_{32}&a_{33} \n\\end{pmatrix}, a_{ij}\\in Q,\\\\\n i=1,2,3,j=1,2,3, detA\\neq0 \\},\\\\\nX=\\begin{pmatrix}\n x_{11} & x_{12}&x_{13} \\\\\n x_{21} & x_{22}&x_{23} \\\\\n x_{31} & x_{32}&x_{33}\n\\end{pmatrix}, detX\\neq0"
X-fixed matrix in G
"detX\\neq0\\to\\exists X^{-1}, detX^{-1}\\neq0"
"X^{-1}=\\frac{1}{detX}\\begin{pmatrix}\n y_{11} & y_{12}&y_{13} \\\\\n y_{21} & y_{22}&y_{23} \\\\\n y_{31} & y_{32}&y_{33}\n\\end{pmatrix}"
where "y_{ij}" - algebraic addition to the element "x_{ij}" .
"B\\in G: B=\\begin{pmatrix}\n b_{11} & b_{12}&b_{13} \\\\\n b_{21} & b_{22}&b_{23} \\\\\n b_{31} & b_{32}&b_{33} \n\\end{pmatrix}, b_{ij}\\in Q,\\\\\n detB\\neq0"
"A*B=X^{-1}ABX"
"X^{-1},A,B,X" 3 "\\times" 3 matrices
"A*B" 3"\\times" 3 matrices with elemets in Q
"det(A*B)=det(X^{-1}ABX)=\\\\\n=det(X^{-1})det(A)det(B)det(X)\\neq0\\\\\nA*B\\in G"
So "*" a binary operation.
Prove that G is a group.
1. "A*B\\in G"
2."(A*B)*C=A*(B*C)"
3."I=\\begin{pmatrix}\n 1& 0&0 \\\\\n 0& 1&0\\\\\n0&0&1\n\\end{pmatrix}\\in G,1\\in Q, det(I)=1\\neq0"
4."A*A^{-1}=I"
Find "A^{-1}:"
"A*A^{-1}=X^{-1}AA^{-1}X=X^{-1}IX=X^{-1}X=I\\\\\ndet(A^{-1})\\neq0"
So G is a group with respect to binary operation
Comments
Leave a comment