Question #135130
Give an example with justification of an element of M3 (Z) that is a unit but not the identity element.
1
Expert's answer
2020-09-25T11:00:53-0400
SolutionSolution

M3(Z)M3(Z) is a 3 by 33\ by\ 3 matrix over ZZ

An element M3(Z)=(aij)3 by 3M3(Z)=(a_{ij})3\ by\ 3

M3(Z)=(a1,1a1,2a1,3a2,1a2,2a2,3a3,1a3,2a3,3)M3(Z) = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix}


A 3 by 33\ by\ 3 matrix over ZZ can be defined as a unit if it has all its elements as zeros except for the main diagonal, which has only ones.

M3(Z)=(100010001)M3(Z) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}

We all know that an identity matrix is the one that satisfies

A(+,)InXn=AA (+, \cdot) I_{nXn}=A Where A is any square matrix of order n

Now on additive identity of matrices, an identity is a matrix with all its elements as zeros.


M3(Z)M3(Z) is a unit but in this case it cannot be an additive identity, for example;

Let A be a matrix (123234345)\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix}

The additive identity

A+M3(Z)=(123234345)+(100010001)=(223244346)(123234345)A+M3(Z)= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix}+\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}= \begin{pmatrix} 2 & 2 & 3 \\ 2 & 4 & 4 \\ 3 & 4 & 6 \end{pmatrix} \neq \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix}

But instead

A+I3=(123234345)+(000000000)=(123234345)=(123234345)A+I_3= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix}+\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix}

Hence proven that an element of M3(Z)M3 (Z) that is a unit but not the identity element.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS