S o l u t i o n Solution S o l u t i o n M 3 ( Z ) M3(Z) M 3 ( Z ) is a 3 b y 3 3\ by\ 3 3 b y 3 matrix over Z Z Z
An element M 3 ( Z ) = ( a i j ) 3 b y 3 M3(Z)=(a_{ij})3\ by\ 3 M 3 ( Z ) = ( a ij ) 3 b y 3
M 3 ( Z ) = ( a 1 , 1 a 1 , 2 a 1 , 3 a 2 , 1 a 2 , 2 a 2 , 3 a 3 , 1 a 3 , 2 a 3 , 3 ) M3(Z) =
\begin{pmatrix}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{pmatrix} M 3 ( Z ) = ⎝ ⎛ a 1 , 1 a 2 , 1 a 3 , 1 a 1 , 2 a 2 , 2 a 3 , 2 a 1 , 3 a 2 , 3 a 3 , 3 ⎠ ⎞
A 3 b y 3 3\ by\ 3 3 b y 3 matrix over Z Z Z can be defined as a unit if it has all its elements as zeros except for the main diagonal, which has only ones.
M 3 ( Z ) = ( 1 0 0 0 1 0 0 0 1 ) M3(Z) =
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} M 3 ( Z ) = ⎝ ⎛ 1 0 0 0 1 0 0 0 1 ⎠ ⎞
We all know that an identity matrix is the one that satisfies
A ( + , ⋅ ) I n X n = A A (+, \cdot) I_{nXn}=A A ( + , ⋅ ) I n X n = A Where A is any square matrix of order n
Now on additive identity of matrices, an identity is a matrix with all its elements as zeros.
M 3 ( Z ) M3(Z) M 3 ( Z ) is a unit but in this case it cannot be an additive identity, for example;
Let A be a matrix ( 1 2 3 2 3 4 3 4 5 ) \begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 5
\end{pmatrix} ⎝ ⎛ 1 2 3 2 3 4 3 4 5 ⎠ ⎞
The additive identity
A + M 3 ( Z ) = ( 1 2 3 2 3 4 3 4 5 ) + ( 1 0 0 0 1 0 0 0 1 ) = ( 2 2 3 2 4 4 3 4 6 ) ≠ ( 1 2 3 2 3 4 3 4 5 ) A+M3(Z)= \begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 5
\end{pmatrix}+\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}=
\begin{pmatrix}
2 & 2 & 3 \\
2 & 4 & 4 \\
3 & 4 & 6
\end{pmatrix} \neq
\begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 5
\end{pmatrix} A + M 3 ( Z ) = ⎝ ⎛ 1 2 3 2 3 4 3 4 5 ⎠ ⎞ + ⎝ ⎛ 1 0 0 0 1 0 0 0 1 ⎠ ⎞ = ⎝ ⎛ 2 2 3 2 4 4 3 4 6 ⎠ ⎞ = ⎝ ⎛ 1 2 3 2 3 4 3 4 5 ⎠ ⎞
But instead
A + I 3 = ( 1 2 3 2 3 4 3 4 5 ) + ( 0 0 0 0 0 0 0 0 0 ) = ( 1 2 3 2 3 4 3 4 5 ) = ( 1 2 3 2 3 4 3 4 5 ) A+I_3= \begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 5
\end{pmatrix}+\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}=
\begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 5
\end{pmatrix} =
\begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 5
\end{pmatrix} A + I 3 = ⎝ ⎛ 1 2 3 2 3 4 3 4 5 ⎠ ⎞ + ⎝ ⎛ 0 0 0 0 0 0 0 0 0 ⎠ ⎞ = ⎝ ⎛ 1 2 3 2 3 4 3 4 5 ⎠ ⎞ = ⎝ ⎛ 1 2 3 2 3 4 3 4 5 ⎠ ⎞
Hence proven that an element of M 3 ( Z ) M3 (Z) M 3 ( Z ) that is a unit but not the identity element.
Comments