The given ring is ,
Where "<\\bar4>= \\{ \\bar0,\\bar2,\\bar4,\\bar6,\\bar8\\}" .
Then a element "x=\\bar b+<\\bar4>\\in G" is called non trivial if "x\\neq<\\bar4>" .
Again ,we known that "\\bar a+<\\bar4>=<\\bar4> \\iff \\bar a\\in <\\bar4>"
as a coset .
We can easily prove it ,
Suppose that "\\bar a+<\\bar4>=<\\bar4>"
Then ,"\\bar a+\\bar0 \\in \\bar a +<\\bar4> =<\\bar4>" .
Conversely ,assume that "\\bar a\\in <\\bar4>" .
Since ,"<\\bar4>" is a subgroup ,therefore by closer property
"\\bar a+\\bar y\\in <\\bar4> \\forall \\ \\bar y \\in <\\bar4> \\implies \\bar y +<\\bar4>\\subseteq<\\bar4>" .
Let "\\bar y\\in <\\bar4>." Since "\\bar a ,\\bar y \\in <\\bar 4>" therefore "\\bar y-\\bar a\\in<\\bar4>."
Thus , "\\bar y = \\bar0+\\bar y=(\\bar a -\\bar a)+\\bar y=\\bar a +(\\bar y-\\bar a)\\in \\bar a +<\\bar4 >"
Hence,"\\bar a +<\\bar 4>=<\\bar 4>" .
Since , "\\bar3 \\notin <\\bar4> \\implies \\bar3+<\\bar4>" is a non trivial element of G.
Comments
Leave a comment