Question #107070
Give a non trivial element of the ring Z10 / <4bar> , with justification.
1
Expert's answer
2020-03-31T15:55:46-0400

The given ring is ,


Z10<4ˉ>={bˉ+<4ˉ>:bˉZ10}=G(say)\frac{\Z_{10}}{<\bar4>}=\{ \bar b +<\bar4>:\bar b\in \Z_{10} \}=G(say)


Where <4ˉ>={0ˉ,2ˉ,4ˉ,6ˉ,8ˉ}<\bar4>= \{ \bar0,\bar2,\bar4,\bar6,\bar8\} .

Then a element x=bˉ+<4ˉ>Gx=\bar b+<\bar4>\in G is called non trivial if x<4ˉ>x\neq<\bar4> .

Again ,we known that aˉ+<4ˉ>=<4ˉ>    aˉ<4ˉ>\bar a+<\bar4>=<\bar4> \iff \bar a\in <\bar4>

as a coset .

We can easily prove it ,

Suppose that aˉ+<4ˉ>=<4ˉ>\bar a+<\bar4>=<\bar4>

Then ,aˉ+0ˉaˉ+<4ˉ>=<4ˉ>\bar a+\bar0 \in \bar a +<\bar4> =<\bar4> .

Conversely ,assume that aˉ<4ˉ>\bar a\in <\bar4> .

Since ,<4ˉ><\bar4> is a subgroup ,therefore by closer property

aˉ+yˉ<4ˉ> yˉ<4ˉ>    yˉ+<4ˉ><4ˉ>\bar a+\bar y\in <\bar4> \forall \ \bar y \in <\bar4> \implies \bar y +<\bar4>\subseteq<\bar4> .

Let yˉ<4ˉ>.\bar y\in <\bar4>. Since aˉ,yˉ<4ˉ>\bar a ,\bar y \in <\bar 4> therefore yˉaˉ<4ˉ>.\bar y-\bar a\in<\bar4>.

Thus , yˉ=0ˉ+yˉ=(aˉaˉ)+yˉ=aˉ+(yˉaˉ)aˉ+<4ˉ>\bar y = \bar0+\bar y=(\bar a -\bar a)+\bar y=\bar a +(\bar y-\bar a)\in \bar a +<\bar4 >

Hence,aˉ+<4ˉ>=<4ˉ>\bar a +<\bar 4>=<\bar 4> .

Since , 3ˉ<4ˉ>    3ˉ+<4ˉ>\bar3 \notin <\bar4> \implies \bar3+<\bar4> is a non trivial element of G.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS